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ABSTRACT

Spatial hearing allows the localization of sounds in com-
plex acoustic environments. There is considerable evi-
dence that this neural system rapidly adapts to changes in
sensory inputs and behavioral goals. However, the mech-
anisms underlying this context-dependent coding are not
well understood. In fact, previous studies on sound local-
ization have mainly focused on the perception of simple ar-
tificial sounds, such as white-noise or pure tone bursts. In
addition, previous research has generally investigated the
localization of sounds in the frontal hemicircle while ignor-
ing rear sources. However, their localization is evolution-
ary relevant and may show different neural coding, given
the inherent lack of visual information. Here we present
a pilot electroencephalography (EEG) study to identify ro-
bust indices of sound localization from participants listen-
ing to a short natural sound from eight source positions on
the horizontal plane. We discuss a procedure to perform
a within-subject classification of the perceived sound di-
rection. Preliminary results suggest a pool of discrimina-
tive subject-specific temporal and topographical features
correlated with the characteristics of the acoustic event.
Our preliminary analysis has identified temporal and to-
pographical features that are sensitive to spatial localiza-
tion, leading to significant decoding of sounds direction
for individual subjects. This pilot study adds to the liter-
ature a methodological approach that will lead to the ob-
jective classification of natural sounds location from EEG
responses.

1. INTRODUCTION

Auditory processing in the human auditory cortex has been
suggested to be underpinned by a dual neural system [1–6],
with anterior areas largely engaged in decoding the content
of a sound (’what’), whereas posterior temporal and pari-
etal areas having a crucial role in the processing of spatial
information (’where’).
Previous research showed distinct cortical patterns when
listeners were presented with sounds from various direc-
tions, demonstrating that non-invasive neural recordings
such as electroencephalography (EEG) are sensitive to au-

ditory spatial processing [7, 8]. However, it is still unclear
how accurately that spatial auditory signal can be decoded.
The present work investigated the cortical processing of
spatial auditory perception and assessed the possibility of
decoding sound location from the EEG signals.
Previous work on spatial hearing focused on artificial
sounds, such as white-noise or pure tone bursts, even
though it has been shown that, in some cases, natural
sounds produce richer and stronger responses [9].
We adopted a wood cracking sound, which is a famil-
iar natural sound with quasi-impulsive characteristics, and
thus we hypothesized that it would produce more com-
plex patterns, including some clear Evoked Potentials (EP;
[10]), allowing stronger classification performances. The
combination of a natural sound, real speakers, and a pure
listening task (rather than a decision task; e.g. P300
paradigm) was used to evaluate the classification perfor-
mance in a simulated realistic scenario.

2. MATERIALS AND METHODS

2.1 Participants

Five healthy volunteers (1 female, one left-handed, mean
age 32.2 years ranging between 29 and 39 years) partic-
ipated in the study. All participants provided voluntary
information consent and reported to have normal hearing
abilities and no known neurological or psychiatric dis-
eases. One subject was excluded from the analysis as the
experiment could not be completed.

2.2 Data acquisition

EEG measurements were recorded at a sampling rate of
500 Hz using a g.Nautilus PRO system (gtec, Austria)
equipped with 32 active dry electrodes (g.SAHARA) po-
sitioned according to the 10-20 system. Reference and
ground were placed at the two mastoids. The acquisi-
tions were performed in four different days in the dimly
lit, acoustically treated, listening room of the electroacous-
tic laboratory of Casa del Suono (Parma, Italy).



Figure 1: Experimental setup. The natural sound was
played from 8 evenly separated loudspeakers positioned
on the horizontal plane at a distance of 1.3 meters from
the sweet spot. The listening level at the sweet spot was
adjusted to peak values of 80 dBA.

Figure 2: Experimental paradigm. Each recording ses-
sion was composed of two runs consisting of 80 trials.
Each trial consisted of the presentation of the sound from
a given direction. The randomized sequence of 80 direc-
tions within a run was balanced (same number of presen-
tations from each direction). A subjective feedback was
provided after each trial through a mobile application and
then a random inter-trial time interval was implemented to
avoid inter-trial phase-locking effects.

2.3 Experimental setting

Subjects sat in a comfortable chair surrounded by eight
loudspeakers evenly spaced every 45◦ (+0◦, -45◦, -90◦, -
180◦, +135◦, +90◦ and +45◦) at ear height and 1.3 meters
from the sweet spot as shown in Fig.3. The loudspeakers
were controlled by Max 8 (Cycling ’74) hosted on a Win-
dows 7 computer and driven through a dedicated sound-
card (details about room and setup can be found in [11]).
The speakers were equalized using inverse filters of the im-
pulse response computed applying the Kirkeby regulariza-
tion [12]. Moreover, as suggested in [13], the listening
level at the sweet spot was calibrated to peak values of 80
dBA, which corresponds to the subjective preferred level.
The experiment consisted in a pure sound localization task
where the subjects were asked to confirm the perceived di-
rection of a natural sound randomly played from one of

Figure 3: Characteristics of the adopted natural sound.
Top plot shows the raw signal (mono track sampled at
44100 Hz), and the bottom one represents its spectrogram
(time vs frequency).

the eight directions. The sound used in the study (shown
in gray in Fig.5) was a 0.58 seconds long wood crack-
ing sound exhibiting two main impulsive components.
The participants provided their feedback after each sound
through a custom mobile application running on a smart-
phone that they held on their hands throughout the whole
experiment. Each subject participated in four sessions that
were performed in four different days. A session was com-
posed of two runs consisting of 80 trials each (10 repeti-
tions per direction), interleaved by a 5-minute break.
The sound directions of each run were defined by a dif-
ferent random sequence and the timings of each trial fol-
lowed the protocol shown in Fig.2. After the end of the
sound reproduction, the interaction with the mobile ap-
plication was disabled for 0.5 seconds to avoid undesired
movements close to the time window of interest. Once
enabled, the participants could confirm their perceived di-
rection without timing constraints to allow them to make
the best choice. The inter-trial time interval between the
feedback confirmation and the beginning of the following
sound reproduction randomly varied between 1 second and
1.5 seconds. The randomization of the inter-trial inter-
val was implemented to avoid artificially induced phase-
locking in the epochs.

2.4 Pre-processing

Pre-processing was performed offline by using EEGLAB
(version 14.1.1b) and custom Python code. At first, EEG
recordings were visually inspected to reject noisy channels
and time intervals. As a result, channel Oz was excluded
from the analysis due to the abnormal fluctuations present
in multiple subjects’ sessions.
After this preliminary step, the pre-processing pipeline
shown in Fig.4 was implemented. Raw EEG signals were
pre-processed with the Artifact Subspace Reconstruction
(ASR) algorithm to increase the SNR [14, 15]. Specifi-
cally, signals were high-pass filtered using the default filter



Figure 4: Pre-processing pipeline.

(non-causal FIR filter, Kaiser window, 0.25 Hz - 0.75 Hz
transition band, 80 dB attenuation) and the clean calibra-
tion data was automatically extracted from the recordings.
The calibration data is used in the algorithm to estimate
the channels covariance used both to identify and to inter-
polate noisy intervals. All parameters of the ASR method
were set to the default values, with the exception of a more
stringent channel correlation criterion (minimum channel
correlation allowed equal to 0.75 compared to the default
of 0.85), a less constraining subject-specific standard de-
viation threshold ranging from 7 to 12 (compared to the
default of 5) to remove only particularly large artifacts,
and a more aggressive criterion for bad channels identifica-
tion (maximum tolerated fraction with respect to the total
recording duration set to 0.2 compared to the default of
0.5). The channels identified as bad by ASR were replaced
by a spherical interpolation of all the remaining channels
using the FieldTrip standard 10-5 channel locations.
After the artifact removal phase, cleaned signals were
band-pass filtered (one-pass, zero-phase, non-causal FIR
filter, Hamming window with 0.0194 pass-band ripple and
53 dB stop-band attenuation, 3 Hz - 35 Hz) and then
epoched retaining the 0.58 after the acoustic stimulus on-
set. The single channel signals exceeding the threshold
range ± 45 µV were spherically interpolated. If, after this
interpolation step, any of the single channel signals of a
trial were still exceeding the threshold, the trial was re-
jected. The percentage of epochs exceeding the thresh-
old for the four subjects was 4.7% ± 4.3%, and the single
channel signals interpolation successfully corrected 91.6%
± 13.9% of them.
Finally, the Denoising Source Separation (DSS) approach
[16] was used to denoise the EEG data . This method ro-
tates the data into a component space that maximizes the
separability among the classes. As a result, it facilitates the
subsequent data analysis by reducing the within-class and
increasing the between-class variability. Being this method
strongly dependent on the average of all the channels, prior
to its usage we discarded the high-amplitude frontal chan-
nels Fp1 and Fp2. The optimal number of DSS compo-
nents to retain was selected through cross-validation in the
data analysis phase for each subject and every spatial con-
figuration. In most of the cases the best value found was in
the range between 20 and 25 components out of 29, thus
rejecting from 4 to 9 components.

2.5 Data analysis

After pre-processing, the extracted trials were used to train
subject-specific classification models for different localiza-
tion configurations (shown in Table 1, 2, and 3). In particu-
lar, given the limited amount of trials per class at disposal,
we used the Random Forest ensemble method leveraging

bagging to reduce model variance. Moreover, we exper-
imented with localization configurations involving aggre-
gations of directions (see first three columns of Table 3) in
order to increase the number of trials per class hypothesiz-
ing common patterns in the brain responses associated to
spatially related directions. We tuned the hyperparameters
of the classifiers through a grid search in a 5-fold cross-
validation configuration with a 70% train, 20% validation
and 10% test splitting.
EEG epochs associated to the different directions and time-
locked to the stimulus onset were aggregated using the me-
dian operator to obtain the corresponding event-related po-
tentials (ERPs) [10]. All further analyses were conducted
on 500 ms epochs that started before the arising of the N1
component in the ERP. This window of interest started at
80 ms, as shown by the black dashed vertical lines in Fig.
5. The reason for this choice is that the N1 component
showed a delay (latency of around 132 ms after stimulus
onset) compared to the typical N1 latency of a sound onset
response (80-120 ms; [17, 18]). Future experiments will
tackle this issue by recording the played sounds with a mi-
crophone to extract more precise timing information.
To build the input feature vector, for each channel we par-
titioned this interval and we used the average value within
the sub-windows as features. The size of the sub-windows
was selected through a cross-validation procedure and in
most cases was found to be 3 samples, resulting in a feature
vector length of 2407 (29 channels x 83 sub-windows).
With more data, we would automatically select only the
statistically significant intervals like those highlighted in
green in Fig. 5. We didn’t apply this procedure because
it requires a greater dataset in order to obtain reliable out-
comes about the significance, especially considering the
need for cross-validation. In this pilot, in order to be as
fair as possible, we rather decided to blindly use all possi-
ble features, leaving to the classifier the burden of identi-
fying the best ones in a supervised fashion.
The other hyperparameters tuned through cross-validation
were number and depth of the trees, set to 1000 and 12 re-
spectively and, as discussed in Section 2.4, the number of
components to retain in the DSS denoising phase. This pa-
rameter was tuned separately for each of the classification
analyses (i.e. for each subject and localization configura-
tion). The optimal value was generally between 20 and
25 components out of 29, with a modal value of 21 (value
used in the plots of Fig. 5).

3. RESULTS

3.1 Physiological responses

Fig. 5 compares for each subject the ERP response of
a representative channel for two localization configura-



(a) Subject 1 (b) Subject 2

(c) Subject 3 (d) Subject 4

Figure 5: ERP response to the sound onset of the four subjects in the two binary localization configurations providing the
greatest discrimination accuracy (configuration S, longitudinal vs latitudinal, top figure, and configuration R, left area vs
right area, bottom figure). For each subject, only one representative channel is presented. The gray line in the background
represents the reproduced natural sound and the green areas show the statistically significant time windows (p < 0.05,
Welch’s t-test with Bonferroni correction) within the area of interest delimited by the black dashed vertical lines. Scalp
topographies for the two classes are presented to show the spatial distribution in the statistically significant time windows
of each localization configuration.



A) B) C) D) E) F) G) H)

Subject 1 61.2± 11.8 60.9± 9.6 56.9± 12.0 62.5± 12.0 58.4± 15.1 56.9± 9.9 59.4± 16.9 63.1± 12.2

Subject 2 57.8± 9.4 61.9± 13.2 53.1± 13.3 57.5± 11.8 41.2± 13.5 47.2± 12.4 54.1± 12.5 63.1± 11.7

Subject 3 53.1± 10.2 63.7± 9.2 61.6± 8.2 58.7± 10.5 49.4± 11.2 53.1± 8.3 64.1± 11.8 62.5± 10.4

Subject 4 60.9± 10.4 60.3± 10.7 55.6± 13.7 58.4± 11.6 53.7± 9.1 62.5± 9.0 64.7± 12.4 60.3± 11.6

Average 58.3± 10.5 61.7 ± 10.7 56.8± 11.8 59.3± 11.5 50.7± 12.2 54.9± 9.9 60.5± 13.4 62.3 ± 11.5

Table 1: Single-trial classification performance achieved in binary localization configuration (single individual directions).
Bold values indicate the configurations where the average performance among the subjects minus the standard deviation is
greater than the chance level (50%).

I) J) K) L) M) N) O) P)

Subject 1 49.2± 8.1 49.2± 8.6 45.8± 8.9 45.6± 8.9 42.9± 8.5 40.8± 10.9 37.7± 11.3 41.0± 9.4

Subject 2 37.3± 9.4 39.4± 10.0 42.5± 11.1 43.1± 9.3 38.9± 9.2 32.3± 8.2 36.2± 8.9 37.7± 8.2

Subject 3 41.4± 9.4 45.2± 8.0 48.1± 9.4 50.6± 10.6 42.1± 8.0 38.7± 11.5 43.7± 9.1 39.2± 10.2

Subject 4 46.9± 10.3 51.7± 10.5 52.3± 11.2 43.3± 12.4 47.9± 9.9 35.4± 10.0 36.9± 6.3 47.7± 10.5

Average 43.7 ± 9.3 46.3 ± 9.3 47.2 ± 10.1 45.7 ± 10.3 43.0 ± 8.9 36.8± 10.1 38.6± 8.9 41.4± 9.6

Table 2: Single-trial classification performance achieved in ternary localization configurations (single individual direc-
tions). Chance level is 33%.

Q) R) S) T) U) V) W) X)

Subject 1 63.8± 6.2 64.8± 7.6 65.6± 9.0 37.8± 6.0 33.0± 6.4 28.7± 4.6 27.7± 6.1 18.0± 4.2

Subject 2 55.4± 8.0 62.4± 5.3 55.1± 6.6 32.0± 7.0 28.1± 8.4 23.4± 6.8 25.6± 6.0 14.8± 4.7

Subject 3 56.0± 4.7 67.3± 6.9 62.5± 7.6 37.8± 8.2 33.6± 6.2 23.9± 5.4 25.7± 8.2 18.3± 4.8

Subject 4 57.9± 5.3 62.1± 5.1 68.1± 7.9 40.3± 9.8 34.7± 5.7 27.9± 5.3 32.2± 8.2 19.1± 4.9

Average 58.3 ± 6.1 64.1 ± 6.2 62.8 ± 7.8 37.0 ± 7.7 32.3 ± 6.7 26.0 ± 5.5 27.8 ± 7.1 17.6 ± 4.7

Table 3: Single-trial classification performance achieved in binary localization configurations (aggregated directions), and
quaternary, quinary and octonary localization configurations (single individual directions). Chance levels are 50%, 25%,
20%, and 12.5% respectively.

tions. The epoch window actually used for the classifica-
tion is delimited by the two black dashed vertical lines and
the green areas indicate time-windows where the ERPs to
the two directions were statistically significant (p < 0.05,
Welch’s t-test with Bonferroni correction). Some of these
windows were statistically significant for multiple spatially
related channels, resulting in regions of interest (see the
scalp topographies shown in the Figure 5). This topo-
graphical information was not explicitly investigated in the
present study but will be considered in future analyses.
The ERP results also show a qualitative difference between
time-locked responses to the first and second sound click.
This phenomenon may be a consequence of the processing
of a natural sound, whose processing involves phenomena
such as temporal prediction and adaptation (speech percep-
tion; [19]).

3.2 Classification results

Behavioral assessment of the subjects’ localization ability
indicated, on average, a 98.9% correct identification
of the sounds direction. Given the strong localization
ability common to all subjects, in future experiments we
might avoid the collection of subjective feedback for the
perceived sound direction. This would result in a shorter
experimental protocol allowing the collection of a higher
number of trials in the same amount of time.
The classification performance of the subject-specific
models on the test set were the result of a 20 randomized
executions of a train-validation-test procedure. Table 1,
2, and 3 show the single-trial results in terms of accuracy,
computed as the number of correctly classified trials
divided by the total number of trials. Each column of a
table represents a different localization configuration and
we divided them in three groups based on the arity (i.e. the
number of elements in a set) of the classification problem
and the size of the classes in terms of directions. Table 1



reports the results of the binary classifications involving
couples of individual directions, Table 2 the results of
the ternary classifications, and Table 3 the results of the
quaternary, quinary and octonary classifications (T, U,
V, W, and X) and the results of binary classifications
involving groups of directions (Q, R, and S). Some
configurations were modeled better than others with the
selected approach (bold values in Table 1, 2, and 3). The
criterion used for their identification consists in the fact
that the average of the subject-specific performance minus
the standard deviation is greater than the chance level.
The mathematical chance level (defined by the number
of classes involved in the classification) was validated
empirically by means of a permutation test based on
random shuffling. As expected, given that the number
of trials per class was balanced, the empirical baseline
matched the mathematical one.
The results of the localization configurations involving
aggregations of directions based on their spatial distri-
bution are slightly higher and present a lower variance
with respect to counterparts involving single directions
(probably due to the greater number of trials available for
training and validation). It was not validated statistically,
nevertheless it seems to give credit to the hypothesis of
common patterns in the brain responses associated to
spatially related directions. This aspect will be taken into
account in the design of the experiment and future data
analyses for a proper investigation.

4. CONCLUSIONS

We investigated the localization of a natural sound from
EEG signals. The single-trial classification results, albeit
drawn from a small dataset, demonstrate the effectiveness
of the approach both from a methodological and practi-
cal point of view. In particular, all four subjects achieved
significant classification accuracies, especially in the local-
ization configurations involving aggregations of directions.
We hypothesize this to be due to the greater number of
trials per class available in those configurations, therefore
encouraging the optimization of the experimental protocol
allowing the acquisition of more trials. Considering the
extremely high localization scores seen in this pilot, one
option would be to avoid the collection the subjective feed-
back. Likewise, these great performances in the configura-
tions involving aggregations of directions seem to indicate
the presence of common patterns in the EEG responses as-
sociated to spatially related directions.
In the experiment we employed a particular natural sound
featuring two prominent clicks separated by 250 ms, thus
evoking two overlapping ERPs that, interestingly, elicited
responses with different temporal patterns. This prelim-
inary result suggests that the evoked responses to the
two clicks may reflect distinct cortical contributions that
were overlooked by previous studies with artificial audi-
tory stimuli, thus suggests further extensive investigation
with more complex natural sounds.
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