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ABSTRACT 

Impulse response measurements have been employed for assessing acoustical properties of rooms since more than 
50 years. Recently, however, audio people learned to employ these impulse responses as numerical filters, initially 
for applying reverberation to dry recordings, and more recently also for creating virtual spatialiaty, particularly when 
creating surround soundtracks. 

Initially a pulsive source was employed, but around 1985 the usage of electroacoustical sound sources started to 
provide better signal to noise ratio and flatter frequency response. In particular, the MLS method gained a lot of 
popularity, because it did require very little computational power. Also the TDS (linear sine sweep) method was 
employed, within the severe constraints of the limited computing capability available at the time. 

Exponential Sine Sweeps were employed since long time for audio and acoustics measurements, but only in recent 
years (2000 and later) their usage became much larger, thanks to the computational capabilities of modern 
computers. Recent research results allow now for a further step in sine sweep measurements, particularly when 
dealing with the problem of measuring impulse responses, distortion and when working with systems which are 
neither time invariant, nor linear. 

This paper presents a review of the history of impulse response measurements, and some of the more recent 
advancements. It describes experimental results aimed to quantify the improvement in signal-to-noise ratio, the 
suppression of pre-ringing, and the techniques employable for performing these measurements cheaply employing a 
standard PC and a good-quality sound interface, and currently available loudspeakers and microphones. 

 

1. INTRODUCTION 

The concept of impulse response is nowadays widely 
accepted as a physical-mathematical model of the 
behavior of a linear, time-invariant system, 
characterized with just one input port and one output 
port. 

In acoustics, this concept is usually applied to the study 
of sound propagation from an emission point and a 
receiver point, located within the same environment.  

This technique is usually implemented by means of an 
omnidirectional sound source, and by an 
omnidirectional receiver (pressure microphone). This 
way any spatial information is lost, both on the emission 
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pattern of real sources, and on the direction of arrival of 
the wavefronts arriving on the receiver. 

In the past it was attempted to obtain partially some 
spatial information by means of directive transducers 
(both sources and receivers). But this happened without 
a rational basis, with just one significant exception, 
represented by the Ambisonics method derived by 
Gerzon in the seventies [1]. 

Recently, advanced impulse-response measurement 
techniques have been developed [2], capable of 
performances significantly better than previous 
methods; furthermore, it is now possible to build, at 
reasonable costs, multichannel sound systems making 
use of large arrays of loudspeakers and microphones. 

At AES-Paris in 2000 a paper of the author [2] did 
disclose some "new" possibilities related to sine sweep 
measurements, triggering a wave of enthusiasm about 
this method. The usage of exponential sine sweep, 
compared with previously-employed linear sine sweeps 
or MLS, provided several advantages in term of signal-
to-noise ratio and management of not-linear systems. 
Furthermore, the deconvolution technique based on 
convolution in time domain with the time-reversal-
mirror of the test signal allowed for clean separation of 
the harmonic distortion products. And the release of the 
Aurora software package [3] made it possible to 
perform these measurements easily and cheaply for 
everyone. 

In reality, nothing was really new, as other authors 
(Gerzon [4], Griesinger [5]) did already discover these 
possibilities. The fact that this approach was not 
successfully employed before is mainly due to the lack 
of computers with enough computational power and of 
easily-usable software tools. 

In the following 6 years, many research groups and 
professional consultants started using exponential sine 
sweeps, and a lot of papers were published (particularly 
remarkable were the JAES papers of Muller/Massarani 
[6] and of Embrechts et al. [7]). The tradeoffs of this 
technique were understood much better, and it was 
recognized the need of further perfecting the 
measurement technique for dealing with some 
problems. 

- pre-ringing at low frequency before the arrival of the 
direct sound pulse 

- sensitivity to abrupt pulsive noises during the 
measurement 

- skewing of the measured impulse response when the 
playback and recording digital clocks were mismatched 

- cancellation of the high frequencies in the late part of 
the tail when performing synchronous averaging 

- time-smearing of the impulse response when 
amplitude-based pre-equalization of the test signal was 
employed 

All of the problems pointed out here have been 
investigated, and several solutions have been proposed. 

This paper presents these "refinements" to the original 
exponential sine sweep technique, and divulgates the 
results of some experiments performed for assessing the 
effectiveness of these techniques. 

The methods analyzed include: 

- post-filtering of the time-reversal-mirror inverse filter 
for avoiding pre-ringing 

- "exact" deconvolution by division in frequency 
domain with regularization 

- development of equalizing filters to be convolved with 
the test signal for pre or post equalization. 

- counter-skewing of the measured impulse response 
when the playback and recording digital clocks are 
mismatched 

- employing running-time cross-correlation for 
performing proper synchronous averaging without 
cancellation effects 

The experiments for assessing the behavior of these 
"enhanced" measurement techniques were performed 
employing a state-of-the-art hardware system, including 
a multichannel sound interface, a powerful PC, and 
modified versions of the Aurora plugins [3].  

Various kinds of microphones were employed too, with 
the goal of assessing if the measurement of certain 
acoustical quantities, such as the "spatial parameters" 
described in ISO 3382, and namely LF, LFC and IACC, 
can be reliably measured with currently available top-
brand microphones. 

The results show that, whilst some of the proposed 
methods really improve substantially the exponential 
sine sweep measurement method, solving the problems 
shown above, on the other hand the weak part of the 
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measurement chain is still about transducers, and 
namely loudspeakers and microphones, which do not act 
always along our expectations, and which can cause 
severe artifacts in the measured quantities. 

It is therefore concluded that any impulse response 
measurement chain can be used with confidence only 
after a set of careful preliminary tests and alignments. 
Without this, the results are prone to be at least 
suspicious, and significant errors have been found in the 
experimental tests. Of consequence, it appears necessary 
to further improve the current measurement standards, 
and mainly ISO 3382, for ensuring reliable and 
reproducible measurements employing this (and other) 
methods of measuring impulse responses. 

2. OLD METHODS 

This chapter describes three “old” methods employed 
for measurement of impulse response: 

• Pulsive sources 

• The MLS (maximum length sequence) method 

• The TDS (linear sine sweep) method, a.k.a. 
“stretched pulse” 

2.1. Pulsive sources 

The original definition of a room impulse response was 
simply the recording of the sound in a room, being 
excited with a pulsive source, such as the explosion of a 
balloon or a gun shot. Fig. 1 shows these sources. 

  

Fig. 1 – Pulsive sound sources 

The sound is usually recorded digitally, employing a 
small portable recorder, such as a DAT deck, or a PC 
equipped with a sound card.  

Usually the recording is already usable without the need 
of any subsequent post-processing. Fig. 2 shows such an 
impulse response and the related octave-band spectral 
analysis. 

 

Fig. 2 – Pulsive impulse response 

It can be noted that the spectrum is bell-shaped: this is 
usually not a big problem when the goal of the 
measurement is to derive acoustical parameters 
(reverberation time, clarity, etc.), but, of course, this 
heavily uneven spectrum makes these measurements 
unusable as numerical filters to be employed in 
convolution reverbs. 

However, some digital equalization can be applied: this 
can flatten the spectrum, but still the signal-to-noise 
ratio will be poor at very low and very high frequencies. 

2.2. The MLS method 

The MLS signal is well known since at least two 
decades [8,9,10]: it is a binary sequence, in which each 
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value can be simply 0 or 1, obtained by a shift register 
as the one shown in fig. 3. The obtained signal is 
periodic, with period of length L given by: 

 1N2L −=  (1) 

in which N is the number of slots in the shift register, 
also called the order of the MLS sequence. Thus an 
order N=16 means a sequence with a period of 65535 
samples.  

N stages

XOR

k stages

x’(n)

Fig. 3 – Shift register for the creation of the MLS signal 

Another very important point is the position of the tap 
inside the shift register: it is possible to generate MLS 
sequences also with multiple taps, and the position of 
the taps influences the behavior of the sequence, 
particularly when it is used for the excitation of system 
which are not perfectly linear. The work of Vanderkooy 
[11] suggests that some sequences are better than others, 
reporting a list of known taps positions which works 
reliably for various orders of the MLS sequence.  

The generated test signal resembles a square wave, but 
the length of the “flats” in the signal is not always equal 
to one sample, depending on the presence of several 
consecutive 1 or 0 in the MLS sequence. 

 
Fig. 4 – MLS sequence of order 5 

After having sampled the response of the system to the 
test signal, this recording has to be processed, for 
extracting the system’s IR. Thanks to the favorable 
mathematical properties of the MLS test signal, the 
deconvolution of the IR can be made with the well 
known Fast Hadamard Transform (FHT), as originally 

suggested by Alrutz [8], and clearly explained by Ando 
[9] and Chu [10]. The Ando formulation was employed 
here. The process is very fast, because the 
transformation happens “in place”, and requires only 
addition and subtractions. The computations are done in 
floating point math. Here a brief description of the 
method is presented. 

When the periodic MLS signal m(j) [j=0..L-1] is applied 
at the input of a linear system, characterized by an 
impulse response h(i) [i=0..P], in which P<L, the 
measured output signal y(k) can be interpreted as the 
convolution of the excitation signal with the system’s 
impulse response: 

 ( ) ( )∑
−

=
−⋅=

1L

0j
jkmjh)k(y  (2) 

Let we transform eq. 2 in matrix notation, defining a 
matrix M so that: 

 ( )[ ]Lmod2jim)j,i(M −+=  (3) 

Thus, eq. 2 becomes simply: 

 { } [ ] { }hMy ⋅=  (4) 

To obtain the impulse response h, we find the inverse 

matrix of M, named 
~
M : 

 1)j,i(M)j,i(M
~

−=  (5) 

Thanks to the mathematical properties of the MLS 
sequence, it can be shown that the product of this 
inverse matrix with the original one produces a slightly 
modified unit matrix: 

 ( ) I1LMM
~

⋅+=⋅  (6) 

in which I is the identity matrix. Thus, for extracting h 
from y, it is required to compute: 

 yM
1L

1h
~
⋅⋅

+
=  (7) 

The above process is effective, but computationally 
quite heavy. There is a trick for obtaining the same 
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result with a very little number of mathematical 
operations. Let we introduce a larger square matrix U, 
of order L+1: 
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This makes eq. 7 to rewrite as 

 

⎟⎟
⎟
⎟

⎠

⎞

⎜⎜
⎜
⎜

⎝

⎛

⎪
⎭

⎪
⎬

⎫

⎪
⎩

⎪
⎨

⎧

−
⎭
⎬
⎫

⎩
⎨
⎧
⋅⋅

+
=

⎭
⎬
⎫

⎩
⎨
⎧

y

y

y
0

U
1L

1
h
0

M  (9) 

in which y  is simply the sum of the L measured 
samples y(k). 

The matrix U can be expressed in terms of an 
Hadamard-type matrix H, thanks to a pair of 
permutation matrixes P and PT: 

 pHpU T ⋅⋅=  (10) 

The multiplication of the Hadamard matrix H with the 
measured vector y can be done very efficiently through 
the Fast Hadamard Transform (analogous to the Fast 
Fourier Transform) algorithm.  Thus, the steps for 
deconvolving the impulse response from the measured 
signal y are: 
1. generate the permutation vector p from one period 

of the MLS sequence with the well-known 
technique of Cohn and Lempel [12]. 

2. reorder the elements in y according to the 
permutation vector p 

3. Add a zero element at the beginning of the 
permuted vector, for making it of length L+1; let 
we call y’ this modified vector 

4. apply the Fast Hadamard Transform to y’: the result 
is a “shuffled” version of h, called h’, in which the 
first element is always zero 

5. throw away the zero at the beginning of h’, and 
reorder backward the elements following the 
inverse permutation described by p.  

After subtracting the DC offset y , and adjusting the 
scale factor dividing by (L+1), the wanted impulse 
response is obtained. 

It must be noted that the generation of the permutation 
vector p can be done once, and stored for every future 
use of the same MLS signal. Thus the only heavy 
computation is the Fast Hadamard Transform, which 
requires only ( )LlogL 2⋅  summations: on modern 
PCs, this task can be easily done in real time, even for 
very long MLS signals. This means that the continuous 
acquisition of the signal can be done simultaneously 
with its processing, and even with the visualization of 
the subsequently deconvolved impulse responses, 
making use simply of the computer’s CPU and of a 
standard sound board (nowadays incorporated in any 
notebook computer). 

The system employed for making impulse response 
measurements with the MLS method is conceptually 
described in fig. 5. A computer generates the test signal, 
which passes through an audio power amplifier and is 
emitted through a loudspeaker placed inside the theatre. 
The signal reverberates inside the room, and is captured 
by a microphone. After proper preamplification, this 
microphonic signal is digitalized by the same computer 
which was generating the test signal, and processed with 
the algorithm described above. 

test signal output
Loudspeaker   

 

Microphone Input

Reverberant Acoustic Space

microphone

Portable PC with full-duplex sound card

 

Fig. 5 – schematic diagram of the MLS measurement 
system 

2.3. The TDS method 

TDS stands for Time Delay Spectrometry, and this 
method was invented by Richard Heyser, in 1967 [13]. 

The method, initially, was implemented with analog 
equipment, and it was based on employing a tracking 
filter directly in frequency domain. Later, Poletti did 
show the limitations of this approach [14]; he also 
suggested that a direct deconvolution can remove these 
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limitations, providing a perfect impulse response 
independently of the sweep rate also in highly 
reverberant rooms. 

The goal of the original Heyser’s method was to 
measure just the initial part of the impulse response, 
ideally only the direct sound, as he was mainly 
interested in performing “anechoic” loudspeaker 
measurements inside a not-anechoic room. 

Inside a reverberant room,, any wave emitted by the 
loudspeaker will be reflected off surfaces in the room; 
we need a way to accept only the direct wave from the 
loudspeaker into our microphone, excluding the 
reflected waves. This means filtering out the reflected 
waves, which make a longer path, and consequently 
arrive on the microphone with some delay. 

 
Fig. 6 – direct and reflected waves 

We accomplish this by creating a bandpass filter tuned 
to a given frequency, leaving the system on for the time 
it takes for the wavefront to reach the microphone from 
the loudspeaker, and then turning the system off. We 
then shift the loudspeaker to a new frequency, re-tune 
the filter to the new frequency, and then repeat. 

Alas, we would like to test the loudspeaker system 
response for a given range of frequencies (say 20 Hz to 
20 kHz, the range of human hearing). Using this system, 
we would need to repeat the experiment for every 
frequency in the range. We need a practical method to 
measure every frequency in a given range. 

One way around this obstacle is to use a linearly swept 
sine wave (also called an FM chirp) as our input signal. 
A linearly-swept sine wave can be expressed as: 

 )tksin()t(s 2⋅=  (11) 

where k is called the sweep rate, and has units of 
Hz/second. The swept sine wave starts at zero 
frequency, and "sweeps" linearly upward toward higher 

frequencies (theoretically up to the Nyquist frequency, 
in a digital system). 

 
Fig. 7 – linear sine sweep 

Since our input signal sweeps, our filter must also 
sweep upward at the same rate. However, our filter must 
always sweep a certain amount of time behind the input 
signal. In other words, we must account for the time it 
takes for the emitted wavefront to reach the 
microphone. This delay is usually constant, given that 
the microphone and speaker do not move relative to one 
another. This delay is a time offset, but it is usually 
referred to as the frequency offset, since the center 
frequency of the bandpass filter is always slightly 
behind the frequency of the signal emitted by the 
speaker. 

 
Fig. 8 – tracking filter is always behind 

We can quantitatively determine certain variables within 
our system, including the time offset of our tracking 
filter and the bandwidth of the tracking filter. Assume 
that the speaker and the microphone are a distance x 
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apart, and let Ft represent the instantaneous frequency 
of the signal being sent to the loudspeaker, and Fr be 
the instantaneous frequency of the signal being received 
at the microphone. The difference between the 
frequencies of the transmitted and recievd signal is: 

 
c
xktkFrFt ⋅=Δ⋅=−  (12) 

Here, c is the speed of sound and k is the sweep rate of 
the signal (usually in Hz/second).  

If our tracking filter has a bandwidth B Hz, then our 
sweep tone will travel some dx in space while within 
the bandwidth of the filter. Since our filter is not ideal, 
we must further define dx as the region in space where 
the signal power is at least half of its maximum value. 
We can call dx the space equivalent bandwidth, and we 
can relate it to bandwidth B, speed of sound c, and the 
sweep rate k: 

 ⎥⎦
⎤

⎢⎣
⎡⋅=
k
cBdx  (13) 

If the closest reflecting wall is causing a reflected wave 
having a path longer than the direct path more than dx, 
then the result of the measurement will be a frequency 
response unaffected by room reflections. 

We can further expand the concept of time delay 
spectrometry to measure the complete system response 
of a sound system, including the reverberant 
environment – this is usually called a room system 
response. We must simply slow down the sweep signal 
so that some (or all) of the acoustical scattering from the 
room surfaces leaks through our tracking filter. 
Essentially, our goal is to let the room reach steady-state 
equilibrium at each frequency before moving to a new 
frequency. By taking measurements at progressive time 
intervals, we obtain a plot of sound pressure as a 
function of both frequency and time. 

Since we are assuming that our system is LTI, we may 
think of each reflecting surface as a loudspeaker image. 
Our system is a series of loudspeaker images, each 
system having its own unique transfer function. Each 
transfer function is the product of a spectral energy 
distribution from each surface, S(ω) and a linear phase 
coefficient, e-jωt. The room system response is the sum 
of all of these individual surface responses: 

 ( ) ( )∑ ω−⋅ω=ω
k

tj
k eSH  (14) 

The impulse response of the system is given by the 
Fourier transform of R(ω). 

 ( ) ( )∫
+∞

∞−

ω ω⋅⋅ω⋅
π

= deR
2
1th tj  (15) 

However, the above approach lends to an impulse 
response which is more-or-less “smoothed out”, due to 
the spectral shape of the tracking filter. And a very slow 
sweep rate is required when measuring the impulse 
response of an highly reverberant room. 

Poletti did quantify these limitations, and he did show 
that it is possible to get a prefect impulse response 
simply by recording the unfiltered room response to the 
sine sweep, usually called r(t), and then apply a suitable 
deconvolution  technique. This is feasible directlyin 
time domain, by convolving with the time reversal of 
the sine sweep signal, s(-t): 

 ( ) ( ) ( )tstrth −⊗=  (16) 

More often, however, the deconvolution is performed in 
frequency domain (employing FFT and IFFT for going 
from time domain to frequency domain and vice versa): 

 ( ) ( )
( )ω
ω

=ω
S
RH  (17) 

 Thanks to the efficiency of the FFT operation, the latter 
approach was widely employed at the end of the 
nineties, particularly in Japan, where this method was 
known as “stretched pulse”. 

However, a linear sweep has a “white” spectrum, and 
consequently provides a signal-to-noise ration which is 
not good enough at very low frequencies. For this, often 
the measurement was spliced in two frequency ranges, 
with a slower sweep rate for the first measurement (at 
low frequency), followed by a second measurement 
with an higher sweep rate covering medium and high 
frequencies. This “double stretched pulse” was widely 
employed by Hidaka and Beranek in their huge survey 
of a collection of the most renowned concert halls all 
around the world [15]. 
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3. QUICK REVIEW OF THE EXPONENTIAL 
SINE SWEEP (ESS) METHOD 

This chapter is recalling the theory already presented in 
[2], so the reader has a consequential presentation of the 
“basic” method, before discussing problems and 
possible enhancements. The reader already knowing this 
method can skip directly to chapter 5. 

When spatial information is neglected (i.e., both source 
and receivers are point and omnidirectional), the whole 
information about the room’s transfer function is 
contained in its impulse response, under the common 
hypothesis that the acoustics of a room is a linear, time-
invariant system.  

This includes both time-domain effects (echoes, discrete 
reflections, statistical reverberant tail) and frequency-
domain effects (frequency response, frequency-
dependent reverberation). 

A first approximation to the above system is a “black 
box”, conceptually described as a Linear, Time 
Invariant System, with added some noise to the output, 
as shown in fig. 9. 

 

“Black Box” 
F[s(t)] 

Noise  n(t) 

input s(t) 
+ 

output r(t) 

Fig. 9 – A basic input/output system 

In reality, the loudspeaker is often subjected to not-
linear phenomena, and the subsequent propagation 
inside the theatre is not perfectly time-invariant.  

The quantity which we are initially interested to 
measure is the impulse response of the linear system 
h(t), removing the artifacts caused by noise, not-linear 
behavior of the loudspeaker and time-variance. 

The method chosen, based on an exponential sweep test 
signal with aperiodic deconvolution, provides a good 
answer to the above problems: the noise rejection is 
better than with an MLS signal of the same length, not-
linear effects are perfectly separated from the linear 
response, and the usage of a single, long sweep (with no 
synchronous averaging) avoids any trouble in case the 
system has some time variance. 

The mathematical definition of the test signal is as 
follows: 

⎥
⎥
⎥
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⎝

⎛
ω
ω

⋅
1e

ln

Tsin)t(s 1

2ln
T
t

1

2

1  (18) 

This is a sweep which starts at angular frequency ω1, 
ends at angular frequency ω2, taking T seconds. 

When this signal, which has constant amplitude and is 
followed by some seconds of silence, is played through 
the loudspeaker, and the room response is recorded 
through the microphone, the resulting signal exhibit the 
effects of the reverberation of the room (which 
“spreads” horizontally the sweep signal), of the noise 
(appearing mainly at low frequencies) and of the not-
linear distortion. 

These “distorted” harmonic components appear as 
straight lines, above the “main line” which corresponds 
with the linear response of the system. Fig. 10 shows 
both the signal emitted and the signal re-recorded 
through the microphone. 

 
Fig. 10 – sonograph of the test signal s(t) and of the 

response signal r(t) 
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Now the output signal r(t) has been recorded, and it is 
time to post-process it, for extracting the linear system’s 
impulse response h(t). 

What is done, is to convolve the output signal with a 
proper filtering impulse response f(t), defined 
mathematically in such a way that: 

)t(f)t(r)t(h ⊗=  (19) 

The tricks here are two: 

• to implement the convolution aperiodically, for 
avoiding that the resulting impulse response folds 
back from the end to the beginning of the time frame 
(which would cause the harmonic distortion products 
to contaminate the linear response) 

• to employ the Time Reversal Mirror approach for 
creating the inverse filter f(t) 

In practice, f(t) is simply the time-reversal of the test 
signal s(t). This makes the inverse filter very long, and 
consequently the above convolution operation is very 
“heavy” in terms of number of computations and 
memory accesses required (on modern processors, 
memory accesses are the slower operation, up to 100 
times slower than multiplications). 

However, the author developed a fast and efficient 
convolution technique, which allows for computing the 
above convolution in a time which is significantly 
shorter than the length of the signal. [16] 

It must also be taken into account the fact that the test 
signal has not a white (flat) spectrum: due to the fact 
that the instantaneous frequency sweeps slowly at low 
frequencies, and much faster at high frequencies, the 
resulting spectrum is pink (falling down by -3 dB/octave 
in a Fourier spectrum). Of course, the inverse filter must 
compensate for this: a proper amplitude modulation is 
consequently applied to the reversed sweep signal, so 
that its amplitude is now increasing by +3 dB/octave, as 
shown in fig. 11. 

When the output signal y(t) is convolved with the 
inverse filter f(t), the linear response packs up to an 
almost perfect impulse response, with a delay equal to 
the length of the test signal. But also the harmonic 
distortion responses do pack at precise time delay, 
occurring earlier than the linear response. The aperiodic 
deconvolution technique avoids that these anticipatory 
response folds back inside the time window, 
contaminating the late part of the impulse response. 

 

 
Fig. 11 – Fourier spectrum of the test signal (above)  

and of the inverse filter (below) 

Fig. 12 shows a typical result after the convolution with 
the inverse filter has been applied. 

 

 
Fig. 12 – output signal y(t) convolved  

with the inverse filter f(t) 

Linear impulse response

2nd harmonic response 

5th harmonic response 
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At this point, applying a suitable time window it is 
possible to extract just the portion required, containing 
only the linear response and discarding the distortion 
products. 

The advantage of the new technique above the 
traditional MLS method can be shown easily, repeating 
the measurement in the same conditions and with the 
very same equipment. Fig. 13 shows this comparison in 
the case of a measurement made in a highly reverberant 
space (a church). 

It is easy to see how the exponential sine sweep method 
produces better S/N ratio, and the disappearance of 
those nasty peaks which contaminate the late part of the 
MLS responses, actually caused by the slew rate 
limitation of the power amplifier and loudspeaker 
employed for the measurements, which produce severe 
harmonic distortion. 

 

 
Fig. 13 – comparison between MLS  

and sine sweep measurements 

This method has nowadays wide usage, and is often 
employed for measuring high-quality impulse responses 
which are later employed as numerical filters for 
applying realistic reverberation and spaciousness during 
the production of recorded music [17]. 

4.  DIRECTIVE SOURCES AND RECEIVERS  

When we abandon the restriction to omnidirectional 
sources and receivers, it becomes possible to get also 
spatial information. A first basic approach is to 
“sample” the room’s spatial response with a number of 
unidirectional transducers, pointing all around in a 
number of directions. 

For example, fig. 14 shows a system employing a highly 
directive microphone mounted on a rotating table, 
employed for mapping the direction-of-arrival of 
reflections inside a theater. 

 
Fig. 14 – directive microphone mounted on a rotating 

table for sampling room reflections 

However, such an approach often ends in repeating a 
large number of measurements while rotating the 
transducers in steps, resulting in long measurement 
times. The approach, furthermore, is not easily scalable: 
all the measurements need to be performed and 
analyzed for “covering” uniformly a notional sphere 
surrounding each transducer. 

The approach proposed here is to employ a spherical 
harmonic expansion of the sound field around the 
source and receiver points. This corresponds to a two-
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dimensional, spatial Fourier transform, conceptually 
similar to what is employed in image processing, but 
working in a spherical coordinate system instead of in a 
plane Cartesian one. 

This approach is the basis of the Ambisonics method 
[18], initially employed with an expansion limited to 
0th-order and 1st-order spherical harmonics around the 
microphone. Here this concept is extended to higher 

orders, and adopted for describing both what happens at 
the source and at the receiver. 

For the sake of concision, here we report the 
mathematical formulas in polar coordinates, as function 
of the Azimuth angle A and the Elevation angle E, and a 
pictorial representation for the spherical harmonics of 
order 0, 1, and 2 – the equations for higher orders are 
indeed quite common to find. 
 

Table 1 – spherical harmonics up to 3rd order 

Order 
0 

0.707107 

 

Order 
1 

 
cos(A)cos(E) 

 
sin(A)cos(E) sin(E) 

Order 
2 

1.5sin2(E)-0.5 cos(A)sin(2E) 
 

sin(A)sin(2E) cos(2A)cos2(E) sin(2A)cos2(E) 
 

Unfortunately, “native” loudspeakers or microphones 
having directivity patterns corresponding to the above 
spherical harmonic functions are available only for 
orders 0 and 1 (monopoles and dipoles). 

However it is possible to “synthesize” the pattern of a 
spherical harmonic by combining the signals being fed 
to, or coming from, a number of individual transducers 
being part of a closely-spaced transducer array.  

The recombination is possible with the following 
formula: 

 ∑
=

⊗=
N

1i
ii xfy  (20) 

Where fi are a set of suitable “matched” FIR filters, 
designed in such a way to synthesize the required 
spherical-harmonic pattern. The design of the filtering 
coefficients can be performed numerically (least-
squares approach), starting from a huge number of 
impulse response measurements made in free field and 
with a source (or receiver) located in P different polar 
positions around the transducer array. 

The system is solved with the least-squares 
approximation, imposing the minimization of the total 
squared error, obtained summing the squares of the 
deviations between the filtered signals and the 
theoretical signals vk: 

 ( )∑ ∑
= = ⎥

⎥
⎦

⎤

⎢
⎢
⎣

⎡
−⊗=ε

P

1k

2

k
N

1i
kiitot vxf  (21) 

The solution of an overconditioned system requires 
some sort of regularization. The Nelson-Kirkeby 
method [19] provides this solution (in frequency 
domain), which can be adjusted by means of the 
regularization parameter β: 

 IXX
VXF T

T
i

⋅β+⋅

⋅
=

 (22) 

These inverse numerical filters have the advantage that 
they automatically compensate for the deviation 
between the responses of the individual transducers, and 
also for acoustical shielding or diffraction effects due to 
the mounting structure. 
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The most basic of such a closely-spaced transducer 
array is a spherical array. The following figure shows a 
source array and a microphone array. 

 

 
Figure 15 – spherical arrays of 12 loudspeakers (above) 

and 32 microphones (below) 

 Once a set of spherical harmonics (in emission or in 
reception) has been measured, it is possible to 
recombine them for creating any three-dimensional 
polar pattern, with an error becoming smaller as the 
order increases. So it is possible to create the emission 
directivity pattern of a real musical instrument, or to 
synthesize the response of an ultra-directive virtual 
microphone, and to aim them in any direction wanted. 

This recombination, again, is trivial: it is just matter of 
summing the signals coming from each of the spherical 
harmonics patterns with proper gains. This is already 
well known with reference to the “receiving” spherical 

harmonics, which are employed for the reconstruction 
of a virtual sound field in the high-order Ambisonics 
method (HOA). The possibilities opened by the 
measurement of a set of impulse responses which are 
spatially-expanded in spherical harmonics both at the 
emission and reception ends is yet to be fully explored. 

However, the measurements can be efficiently 
performed employing a PC equipped with a 
multichannel sound card. Nowadays a portable system 
capable of 32 simultaneous inputs and 32 simultaneous 
outputs can cost less than 3000 USD, all included. Such 
a system can be easily employed for performing 
measurements up to 3rd order (16 harmonics) both in 
emission and in reception: a sequence of 16 sine sweeps 
is played, each of them being simultaneously fed with 
different gains and polarities to the individual 
loudspeakers being part of the spherical emission array. 
The signals of the 32 microphones are recorded, and 
subsequently processed for the deconvolution of the 
impulse response, and for recomputing the 16 spherical 
harmonic signals. At the end of the measurement, which 
takes approximately 8 minutes if 15s-long sweeps are 
employed, a complete set of 16x16=256 impulse 
responses are obtained. 

This set is a complete characterization of the room 
impulse response, containing both the time-frequency 
information, and the spatial information as “seen” both 
from the source and the receiver. It is therefore possible 
to derive subsequently, by post-processing the measured 
set of impulse responses, the virtual impulse response 
produced by a source having arbitrary directivity and 
aiming, as captured by a microphone also having 
arbitrary directivity and aiming. 

The data measured also allow for spatial analysis, 
computation of spatial parameters, pictorial 
representation of the spatial information as colour maps, 
and high quality rendering of the recorded spatial 
information by projection over a suitable three-
dimensional sound playback system. 

As an example, it is shown here how it is possible to 
display the direction of arrival of early reflections, at 
different frequencies, performing a directive analysis 
based on the computation of the Sound Intensity vector.  

The following figure, taken from a work of Merimaa, 
Peltonen and Lokki [], is an example of superposing the 
directional vectors over the first 100 ms of the 
sonograph taken from a B-format impulse response (1st 
order Ambisonics signals, corresponding to spherical 
harmonics of orders 0 and 1): 
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Fig. 16 – graphical display of a directional impulse 

response 
 

5. PROBLEMS WITH THE ESS METHOD 

Despite the significant advantages shown by the ESS 
method in comparison with all the other previously-
employed methods, some problems can still be found, as 
already pointed out in chapter 1. 

In the following subchapters, each of these problems is 
analyzed, and proper workarounds are presented. 

5.1. Pre-ringing 

The measured impulse response often shows some 
significant pre-ringing before the arrival of the direct 
sound. 

This is easily shown performing directly the 
deconvolution of the IR from the original test signal, 
without having it passing through the system-under-test. 

This way, one should get a theoretically-perfect Dirac’s 
delta function. The old MLS method is perfect in this 
case, providing exactly a theoretical pulse. The 
following figure shows instead what happens with the 
standard ESS method. 

 
Fig. 17 – pre-ringing artifact with fade-out 

As shown in fig. 17, the peak is in reality some sort of 
Sync function, and it shows a number of damped 
oscillations both before and after the main peak. This is 
due to the limited bandwidth of the signal (22 Hz to 22 
kHz, in this case) and to the presence of some fade-in 
and fade-out on the envelope of the test signal (0.1s in 
this example, employing a 15s-long ESS). These two 
factors define substantially a trapezoidal window in the 
frequency-domain, which becomes the Sync-like 
function in time domain. 

However, the situation ameliorates significantly if we 
remove the fade-out. The following figure shows the 
results obtained with exactly the same settings as in the 
previous case, but with a length of the fade-in set to 0.0s 
(fade-in is still 0.1s). 

Albeit the appearance of the waveform looks the same 
(due to the “analogue waveform” display of Adobe 
Audition), looking carefully at the digital values (the 
small squares along the waveform) one now sees that 
the results are very close to a theoretical Dirac’s Delta 
function, and that no pre-ringing or post-ringing are 
anymore significantly present. 

 
Fig. 18 – reduced pre-ringing artifact without fade-out 
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However, it is not a good idea to remove completely the 
fade-out: at the end of the sweep, the final value 
computed could be not-zero, and consequently the 
sound system will be excited with a step function, which 
spreads a lot of energy all along the spectrum. 

A solution alternative to removing the fade-out is to 
continue the sweep up to the Nyquist frequency (22050 
Hz, in our example, as the sampling rate was 44.1 kHz), 
and cutting it manually at the latest zero-crossing before 
its abrupt termination. This way, no pulsive sound is 
generated at the end, and the full-bandwidth of the 
sweep removes almost completely the high-frequency 
pre-ringing. 

However, in some cases, also low frequencies can cause 
a significant pre-ringing. This is shown easily 
employing a “loopback” connection, that is, connecting 
a wire directly from the output to the input of the sound 
card. 

The following figure shows the result of a “loopback” 
measurement, employing the same parameters as for the 
previous example (fs=44100 Hz, sweep from 22 Hz to 
22050 Hz, 15s long, 0.1s fade-in, no fade-out).  

 
Fig. 19 – low-frequency pre-ringing artifact 

Removing the fade-in does not provide any benefit, in 
this case. So, the way of controlling this type of pre-
ringing (due to the analog equipment) is to create a 
proper time-packing filter, and to apply it to the 
measured IR. 

A packing filter is a filter capable of compacting the 
time-signature of the impulse response. Various 
methods for creating a numerical approximation to an 
ideal packing filter have been proposed in the past. The 
method employed here is the one developed by Ole 
Kirkeby, when working at the ISVR with prof. Nelson 
[20].  

Although Kirkeby did propose this method for 
multichannel inversion (cross-talk cancellation), it can 
be successfully employed also just for the purpose of 
packing in time the transfer function of a single-input, 
single-output system. 

The Kirkeby algorithm is as follows: 

1) The IR to be inverted is FFT transformed to 
frequency domain: 

 H(f) = FFT [h(f)] (23) 

2) The computation of the inverse filter is done in 
frequency domain: 

 ( ) ( )[ ]
( )[ ] ( ) ( )ffHfHConj

fHConjfC
ε+⋅

=  (24) 

 Where ε(f) is a small regularization parameter, 
which can be frequency-dependent, so that the 
inversion does not operates outside the frequency 
range covered by the sine sweep 

3) Finally, an IFFT brings back the inverse filter to 
time domain: 

 c(t) = IFFT [C(f)] (25) 

Usually the regularization parameter ε(f) is choosen 
with a very small value inside the frequency range 
covered by the sine sweep, and a much larger value 
outside that frequency range, as shown in fig. 20: 

εest

εint

flow fhigh

Δf Δf

 
Fig. 20 – frequency-dependent regularization parameter 

The following figure shows the inverse filter computed 
for compacting the “loopback” IR shown in fig. 19: 
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Fig. 21 – “compacting” inverse Kirkeby filter 

When this filter is convolved with the measured 
“loopback” IR shown in fig. 19, the result is the one 
shown in the next figure: 

 
Fig. 22 – “loopback” IR convolved with the 

“compacting” inverse Kirkeby filter 

It can be seen that the usage of the inverse filter 
managed to re-pack the measured IR back to an almost 
perfect Dirac’s Delta function. 

In conclusion, pre-ringing artifacts can be substantially 
avoided by combining the usage of a wide-band sweep 
running up to the Nyquist frequency, without any fade-
out, and the usage of a suitable “compacting” inverse 
filter, computed with the Kirkeby method from a 
“reference” impulse response. 

In the example shown here, the “reference” 
measurement for computing the inverse filter has been 
performed electrically, so it does not contain the effect 
of power amplifier, loudspeaker and microphones. This 
makes sense if the goal of the measurement is to get 
information about the behaviour of these 
electroacoustics components (in most cases, for 
measuring the performances of the loudspeaker). 

5.2. Equalization of the equipment 

In other cases, in which the goal of the measurement is 
just to analyze the acoustical transfer function between 
an “ideal” sound source and an “ideal” receiver, also the 
effect of the electroacoustical devices should be 
removed. In this case, the “reference” measurement is a 
complete anechoic measurement including power 
amplifier, loudspeaker and microphone, and the Kirkeby 
inverse filter will remove any time-domain and 
frequency-domain artifact caused by the whole 
measurement system. 

For example, the following figure shows the anechoic 
measurement of the transfer function of a loudspeaker + 
microphone setup: 

 
Fig. 23 – anechoic measurement of the “reference” IR 

of an artificial mouth and an omnidirectional 
microphone 

This example refers to a small, limited-range 
loudspeaker, employed in a head-and-torso simulator. 
The measured IR and its frequency response are shown 
in the following pictures: 
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Fig. 24 – measured IR (above) and frequency response 

(below) of the artificial mouth system 

Again, a Kirkeby inverse filter is computed, for 
correcting the transfer function of the whole 
measurement system (this time the usable frequency 
range has been narrowed to 100-11000 Hz): 

 
Fig. 25 – “equalizing” inverse Kirkeby filter 

When this inverse filter is applied (by convolution) to 
the measured IR of this artificial mouth system, we get 
an IR and a frequency response as shown here below: 

 
Fig. 26 – measured IR (above) and frequency response 
(below) of the artificial mouth system after equalization 

with the inverse filter 

Although in this case the inverse filter did not manage 
to provide a “perfect” result, it still caused the transfer 
function of the system to closely approach the “ideal” 
one. This way, the sound system can be employed for 
measurements without any significant biasing effect. 

The latter point to be discussed is if it is better to apply 
this equalizing filter to the test signal before playing it 
through the system, or to the recorded signal 
(indifferently before or after the deconvolution). 

Both approaches have some advantages and 
disadvantages. Applying the equalizing filter to the test 
signal usually results in a weaker test signals being 
radiated by the loudspeaker, and in clipping at extreme 
frequencies (where the boost provided by the equalizing 
filter is greater). 

On the other hand, the usage of the filter after the 
measurement is done results in “colouring” the 
spectrum of the background noise, which can, in some 
case, become audible and disturbing. 
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In practice, as it often happens, the better strategy 
revealed to be hybrid: the test signal is first roughly 
equalized, employing one of the standard tools provided 
by Adobe Audition (for example Graphic Equalizer). 
This allows to limit the boost at extreme frequencies 
and the gain loss at medium frequencies, but however 
the radiated sound becomes already almost flat. 

Then, as usual, a reference anechoic measurement is 
performed (employing the pre-equalized test signal); a 
Kirkeby inverse filter is thereafter computed, with the 
goal of removing the residual colouring of the 
measurement system. This inverse filter is applied as a 
post-filter, to the measured data, ensuring that the total 
transfer function of the measurement system is made 
perfectly flat. This is the approach successfully 
employed in the Waves project, as described in more 
detail in [17]. 

5.3. Pulsive noises during the measurement 

When long sweeps are employed for improving the 
signal-to-noise ratio, the risk that some pulsive noise 
occurs during the measurement increases, as it is 
difficult to keep people perfectly still for more than a 
few seconds. Typical sources of pulsive noise are 
objects falling on the floor, seats being moved, or 
“cracks” caused by steps over wooden floors. 

The following sonogram shows a recorded sweep 
contaminated by an evident spurious pulsive event (the 
vertical line), caused by an object falling on the floor. 

 
Fig. 27 – pulsive event contaminating an ESS 

measurement 

After convolution with the inverse filter, this pulsive 
event causes a quite evident artifact on the IR: 

 
Fig. 28 – Artifact caused by a pulsive event  

In practice, the artifact is a sort of frequency-decreasing 
sweep, starting well before the beginning of the linear 
impulse response, and continuing after it. The first part 
is practically irrelevant on the linear IR, as it will be cut 
away together with the harmonic distortion responses. 

However, the part of this spurious sweep occurring in 
the late part of the measurement can cause severe 
problems. The following figure shows a comparison 
between the octave-band-filtered IR with and without 
contamination by the spurious pulsive noise. 

 
Fig. 29 – octave-band filtered IR (at 1 kHz) 

contaminated from pulsive noise (above) 
and without contamination (below) 

The presence of the spurious effect generated by the 
pulsive noise is causing an overestimate of T30 (2.48 s 
instead of 2.13 s). Also Clarity C80 and Center Time are 
affected, but more slightly. 
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One way of removing this artifact consists in silencing 
the recording signal in correspondence of the pulsive 
event, as shown in the following figure:  

 

 
Fig. 30 – silencing the spurious event 

After deconvolving the edited signal, the following IR is 
obtained: 

 
Fig. 31 – effect of the silenced pulsive event  

on the deconvolved IR 

Despite silencing the event, the artifact is still there, 
albeit with reduced amplitude. The analysis of the 
reverberant tail still shows some effect of the pulsive 
artifact, as shown here: 

 
Fig. 32 – octave-band filtered IR  

with silenced pulsive event 

A much better removal of the pulsive event is obtained 
by employing the Click/Pop Eliminator provided by 
Adobe Audition. The following picture shows how it 
works: 

 

 
Fig. 33 – effect  of the Auto Click/Pop Eliminator 

In this case, the result of the deconvolution is the 
following: 
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Fig. 34 – effect of the pulsive event  

on the deconvolved IR after click/pop Eliminator 

The artifact has been further reduced, but it is still there. 

Finally, an even better way of removing the artifact is 
based on the knowledge of the frequency of the sine 
sweep at the moment in which the pulsive event did 
happen. In the case presented here, the instantaneous 
frequency was 2159 Hz. So, applying a narrow-
passband filter at this exact frequency, all the wide-band 
noise is removed, and a “clean” sinusoidal waveform is 
restored, as shown in the following figures: 

 
Fig. 35 – usage of FFT Filter for removing the pulsive 
artifact 

 

 
Fig. 36 – effect  of FFT filter for removing  

the pulsive artifact 

After deconvolution, the measured impulse response is 
as follows: 

 
Fig. 37 – result of the FFT filter 

Now the artifact amplitude has been reduced so much 
that there is no more distortion of the reverberant tail, as 
shown here: 
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Fig. 38 – octave-band filtered IR  

with pulsive event removed with FFT filter 

So it can be concluded that the best way of removing a 
pulsive artifact from a sweep measurement is to apply a 
narrow-band filter just around the instantaneous 
frequency at which the event occurred. 

 

 

5.4. Clock mismatch 

One of the great advantages of the ESS method over 
other methods for measuring the impulse response is 
that a tight synchronization between the playback clock 
and the recording clock is not required. 

In fact, even if two completely independent hardware 
devices are employed, and no clock synchronization is 
employed, usually the impulse response obtained is 
perfectly clean and without observable artifacts. 
However, when the mismatch between the two clocks 
becomes significant, the deconvolved impulse response 
starts to be “skewed” in the frequency-time plane. 

For example, the following figure shows the result of a 
purely-electrical measurement, obtained playing the test 
signal with a portable CD player, directly wired to a 
computer sound card, employed for recording. 

 

 
Fig. 39 – a skewed IR 

The waveform clearly shows that low frequencies are 
starting earlier than high frequencies, and the sonograph 
demonstrates that, with a logarithmic frequency scale, 
the IR does not have a vertical (synchronous) 
appearance, but a sloped (skewed) appearance. 

Various methods can be applied for re-aligning the 
clocks. For example, if a “reference” measurement can 
be performed, we could try to use a Kirkeby inverse 
filter for fixing the mismatch, as already shown in 
chapters 3.1 and 3.2. 

The following figure show the result of such an inverse 
filter applied to the electrical measurement performed. 
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Fig. 40 – correction of a skewed IR employing a 

Kirkeby inverse filter 

The result obtained employing the inverse filter is quite 
good; and it is also correcting for the magnitude of the 
frequency response of the system, not only for the 
frequency-dependent delay. 

Nevertheless, this approach requires the availability of a 
clean reference measurement, performed either 
electrically or under anechoic conditions. 

Whenever a reference measurement is not available, the 
inverse filter approach cannot be employed. Another 
possible solution is the usage of a pre-strecthed inverse 
filter for performing the IR deconvolution. 

For example, in this example it can be seen how the 
original inverse filter is too short. If we now create an 
inverse filter slightly longer than the original one, we 
can correct for the skewness of the sonograph. 

Looking again at fig. 39, we see that the skewness is 
approximately 8.5 ms long. So we generate a new sine 
sweep, and its inverse sweep, 8.5 ms longer. 

When we convolve this longer inverse sweep with the 
recorded signal, the deconvolution produces the 
following result: 

 

 
Fig. 41 – correction of a skewed measurement 

employing deconvolution with a longer inverse sweep 

This result is not so clean as the one obtained with the 
Kirkeby inversion, but now we have got a quite good 
clock realignment without the need of a reference 
measurement. 

It must be said, however, that a skewed impulse 
response, although bad to see and to listen, is still quite 
usable for computing acoustical parameters. It is 
nevertheless always useful to correct for the clock 
mismatch, as this significantly improves the peak-to-
noise ratio. For example, with the data presented here, 
the usage of the longer inverse sweep for the 
deconvolution provides an amelioration of the peak-to-
noise ratio by 12.45 dB, which is quite significant. 

 

5.5. Time averaging 

The usage of averaging several impulse responses for 
improving the signal-to-noise ratio is a deprecated 
technology when working with the ESS method. 

Synchronous time averaging works only if the whole 
system is perfectly time-invariant. This is never the case 
when the system involves propagation of the sound in 
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air, due to air movement and change of the air 
temperature. So, the preferred way for improving the 
signal to noise ratio is not to average a number of 
distinct measurements, but instead to perform a single, 
very long sweep measurement, as clearly recommended 
in the ISO 18233/2006 standard. 

However, in some cases the usage of long sweeps is not 
allowed (for example, when the method is implemented 
on small, portable devices equipped with little memory), 
and so time-synchronous averaging is the only way for 
getting results in a noisy environment. 

Unfortunately, even a very slight time-variance of the 
system produces substantial artifacts in the late part of 
the reverberant tail, and at higher frequencies. 

This happens because the sound arriving after a longer 
path is more subject to the variability of the time-of 
flight due to unstable atmospheric conditions. 
Furthermore, a given differential time delay translates in 
a phase error which increases with frequency. 

The following picture compares the sonographs of two 
IRS, the first comes from a single, long sweep of 50s, 
the second from the average of a series of 50 short 
sweeps of 1s each. 

 
Fig. 42 – single sweep of 50s (above) 

versus 50 sweeps of 1s (below) 

Although from the above picture it is not very easy to 
see the difference, it can be noted that the energy of the 
reverberant tail is significantly underestimated, at high 
frequency, in the second measurement. This can be seen 
easily displaying the spectrum of the signal in the range 
100 ms to 300 ms after the direct sound, as shown here: 

 
Fig. 43 – spectrum of single sweep of 50s (above) 

versus 50 sweeps of 1s (below) 

It can be seen how, above 350 Hz, the synchronously-
averaged IR is systematically underestimated. Around 
5-6 kHz the underestimation is more than 10 dB. 

This of course affects also the slope of the decay curve, 
and the estimate of reverberation times. The following 
figure shows the comparison between the octave-band 
filtered impulse response and decay curves at 4 kHz: 

 

 
Fig. 44 – octave-band-filtered impulse response  

of a single sweep of 50s (above) 
versus 50 sweeps of 1s (below) 

It can be seen how the single-sweep measurement is 
providing a perfectly linear decay with quite good 
dynamic range (63 dB), whilst the synchronously-
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averaged IR exhibit strong underestimate of the energy 
of the reverberant tail, and simultaneously a much worst 
signal-to-noise ratio (43 dB). 

It can be concluded that synchronously-averaging a 
number of subsequent IRs obtained with the ESS 
method is causing unacceptable artifacts. 

However, an alternative technique can be used, in these 
cases, for processing the data. 

It is necessary to create a stereo file, containing the test 
signal in the left channel, and the recorded signal in the 
right channel, as shown here: 

 
Fig. 45 – multisweep signal (test and response) 

Now this stereo waveform is processed with the new 
Aurora plugin named Cross Functions, which is 
employed for computing the transfer function H1, by 
performing complex averaging in spectral domain: 

 ( )
LL

LR
1 G

GfH =  (26) 

Where GLR and GLL are the averaged cross-spectrum 
and autospectrum, respectively 

This is the user’s interface of this plugin: 

 
Fig. 46 – Computation of H1 

Only the first half of the resulting transfer function is 
kept, for removing most of the effects of the Hanning 
window. The following figure shows the recovered 
impulse response, compared with the single-sweep one: 

 
Fig. 47 – single sweep of 50s (above) 

versus 50 sweeps of 1s (below)  
processed with the Cross Functions module 

Analyzing the octave-band-filtered impulse response (at 
4 kHz), the following is obtained: 
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Fig. 48 – octave-band-filtered impulse response  

of a 50 sweeps of 1s (Cross Functions) 

It can be seen that the situation is now significantly 
better than with “standard” time-synchronous 
averaging: the frequency-domain processing provided 
an impulse response with better signal-to-noise ratio and 
with a reverberant tail only slightly underestimated. The 
single sweep method is still better, but now the 
difference is not so large, and the measurement result is 
still usable. 

So, in practice, the employment of a number of 
independent sweeps can provide almost acceptable 
results, provided that the deconvolution and averaging 
of the impulse response are performed in reversed order 
(first averaging, then deconvolution), and in the 
frequency domain. 

 

 

 

 

 

6. PERFORMANCE OF ELECTROACOUSTIC 
TRANSDUCERS 

For room acoustics measurements, it is common to 
employ: 

• An omnidirectional loudspeaker (dodecahedron) 

• An Omni + Figure of Eight microphone  

• A binaural microphone (dummy head) 

In the previous chapter it has been already discussed 
how to measure the impulse response and frequency 
response of a measurement chain containing also 

loudspeakers and microphones, and how to reasonably 
equalize it. However, the problem still arises of the 
spatial properties (directivity) of these transducers. 

It will be shown here that the measured directivities of 
loudspeakers and microphones differ significantly from 
the nominal ones, causing errors which are orders of 
magnitude greater than those described in the previous 
chapter. 

 

6.1. Dodechaedron loudspeakers 

These loudspeakers are usually employing single-way, 
wide-band transducers, and require heavy equalization 
fro providing flat sound power response. However, the 
equalization cannot correct the polar patterns of these 
loudspeakers, which deviate significantly from 
omnidirectional starting at frequencies above 1 kHz. 

Here we present the results of polar patterns measured 
in anechoic conditions for three dodechaedrons. The 
first one is a standard-size (40cm diameter) employing 
for building acoustics measurements (LookLine D-300); 
the second one is a smaller version (25 cm diameter) 
specifically developed for measurement of impulse 
responses in theaters and concert halls (Look Line D-
100). Finally, the third one employs waveguides for 
reconstructing a more uniform spherical wavefront 
(Omnisonics 1000). 

The following figure shows the three dodecahedrons 
analyzed: 

 
Fig. 49 – 3 dodecahedron loudspeakers 

The above loudspeakers have been measured inside an 
anechoic chamber over a turntable, so the horizontal 
polar patterns have been obtained, in octave-bands. 

The following three figures compare these polar 
patterns at 1000, 2000 and 4000 Hz. 
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 Horizontal Polar Plot - LookLine D300 - 1000 Hz
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Fig. 50 – directivity patterns at 1 kHz 

 Horizontal Polar Plot - LookLine D300 - 2000 Hz
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 Horizontal Polar Plot - LookLine D200 - 2000 Hz
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Fig. 51 – directivity patterns at 2 kHz 
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Fig. 52 – directivity patterns at 4 kHz 

It can be seen how all three these dodecahedrons exhibit 
quite irregular polar patterns at medium-high frequency. 

 

 

6.2. Omni + Figure of 8 mics 

Although the usage of small-size measurement 
microphones does not pose any significant problem (as 
a B&K ½” capsule is almost perfectly omnidirectional 
and with flat frequency response up to 20 kHz), when 
spatial parameters such as LE, LF or LFC need to be 
measured it is necessary to employ a variable-
directivity-pattern mike, providing both omnidirectional 
and figure-of-8 patterns. 

For this purpose, it is common to employ not-
measurement-grade probes, often manufactured by top-
quality makers such as Neumann or Schoeps. However, 
the values of spatial parameters measured with different 
microphonic probes are often quite irreproducible. 

So it was decided to perform a comparative experiment 
among 4 of these dual-pattern probes, including these 
mikes: 

• Soundfield ST-250 

• Bruel & Kjaer sound intensity kit type 3595 

• Schoeps CMC5 

• Neumann TLM 170R 

The following image shows some of the probes being 
compared, during the measurements performed inside 
the Auditorium of Parma: 

 
Fig. 53 – 3 microphonic probes 

A stereo impulse response has been measured with each 
probe, containing the Omni response on the left channel, 
and the figure-of-8 response in the right channel. Each 
of these 2-channels IRs have been processed with the 
Aurora plugin named Acoustical Paramaters, specifying 
the type of probe being employed, as shown here: 
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Fig. 54 – the Acoustical Parameters plugin 

This way, the LF parameter has been measuring for all 4 
probes, in octave bands, and at two distances from the 
sound source (7.5m and 25m). The following figure 
shows the results at 25m: 
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Fig. 55 – LF measured at 25m 

It can be seen how the results are completely diverging; 
it is impossible to establish what of the 4 probes was 
measuring correctly, albeit the Schoeps looks more 
“reasonable” than the other three. 

These deviations are caused by the polar patterns of the 
probes. As an example, here we report a couple of polar 
patterns of the Soundfield ST-250, measured on a 
turntable inside an anechoic room: 
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Fig. 56 – ST-250 – polar patterns at 500 Hz and 2 kHz 

It can be seen that, even at medium frequencies, the 
figure-of-8 pattern is distorted, and is not properly gain-
matched with the omnidirectional one. These deviations 
are even greater at very low and very high frequencies: 
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Fig. 57 – ST-250 – polar patterns at 125 Hz and 8 kHz 
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It can be concluded that actually no available 
microphonic system can be used for assessing reliably 
the values of spatial acoustical parameters such as LE, 
LF or LFC. 

 

 

 

6.3. Binaural microphones 

Another way of assessing the spatial properties of a 
room is by means of the IACC parameter (inter aural 
cross correlation), also defined in ISO-3382, and 
measurable employing a binaural microphone and the 
Aurora Acoustical Parameter plugin. 

However, various makers of dummy heads produce 
quite different microphone assemblies. For checking 
comparatively their performances, a set of impulse 
response measurements have been performed in a large 
anechoic chamber, employing a turntable controlled by 
the sound card, as shown in the following figure: 

 
Fig. 58 – anechoic measurements on dummy heads 

Also in this case 4 different binaural microphones have 
been tested: 

• Bruel & Kjaer type 4100 
• Cortex 
• Head Acoustics HMS-III 
• Neumann KU-100 

A synthetic diffuse sound field has been generated, 
employing a number of loudspeakers surrounding the 
dummy head and feeding them with uncorrelated pink 
noise. 

In principle, given the fact that the sound field was 
exactly the same, all the dummy heads should have 
given the same value of IACC. Instead, as shown in the 
following figure, the results have been quite diverging: 

IACCe - random incidence

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

31.5 63 125 250 500 1000 2000 4000 8000 16000

Frequency (Hz)

IA
C

C
e

B&K4100
Cortex
Head
Neumann

 
Fig. 59 – IACC measured with the 4 dummy heads 

The deviations, however, are not so bad as those 
obtained in the previous chapter for the measurement of 
LF. It can be concluded that, with currently available 
systems, the measurement of IACC is slightly more 
reproducible than that of LF. 

 

 

 

 

 
 

7. MEASURING AND EMULATING NOT-
LINEAR AND TIME-VARIANT SYSTEMS 

When the system being measured (and later 
reconstructed by convolution with the measured impulse 
response) is not linear and time-variant, all the methods 
based on the assumption of a LTI system do fail. 

We need a different mathematical framework for 
dealing with not-linear, time-variant system. The most 
known and widely applicable one is the Volterra series 
expansion. Unfortunately, this method is 
computationally too expensive for being performed in 
real time even on modern computers, so a subset of the 
complete Volterra scheme has been developed by the 
author. 



Farina 
 

Impulse Response Measurements

 

Page 28 of 31 

7.1. The Diagonal Volterra Kernel method 

This chapter provides a quick review of the digital-
filtering method known as Diagonal Volterra Kernel 
convolution (also known as Vector Volterra Kernel). A 
more extended explanation is given in [21] and [22]. 

This method can be seen as a “reduced version” of the 
general Volterra representation of a not-linear system: 
while the general approach requires the usage of matrix 
kernels, having a dimensionality equal to the order of 
the kernel (so the second-order Volterra kernel is a 
square matrix, the 3rd-order one is a cubic matrix, and so 
on), the Diagonal Volterra Kernel approach employs 
mono-dimensional vectors at any orders. 

The general Volterra formulation represents the output y 
of a not-linear system, being fed with the input signal x, 
as: 

( ) ( )+−⋅= ∑
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In this formulation, it is assumed that all the kernels are 
of the same size (M samples). The input signal x is 
linearly-convolved with the first-order kernel h1, the 
squared values of the input samples are convolved with 
the second-order matrix h2, and so on. 

This approach provides, in theory, a complete 
representation of the not-linear behavior of the system, 
under the hypothesis that it is still time-invariant, and 
that the Volterra expansion is reaching an order high 
enough and that the kernel size M is large enough for 
capturing the whole “memory” of the system. 

However, the computational load required tends to 
explode beyond any reasonable limit as the order of the 
expansion is more than 3, whilst it is known that at least 
5 orders are required for perceptually-acceptable 
simulation of harmonic-distorting devices such as 
loudspeakers or musical instruments. 

The simplified formulation does only take into account 
the Volterra coefficients located along the diagonal of 
the higher-orders matrixes, so that the computational 
load now scales linearly with the order up to which the 
not-linear simulation is performed: 
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In principle, this could provide a strong degradation in 
the accuracy of the simulation. In practice, instead, most 
of the Volterra coefficients outside the diagonal are 
usually very close to zero, and hence this “reduced” 
Volterra convolution is generally perceptually very 
good. In most cases, the advantage provided by the 
possibility to extend the simulation to higher orders 
outperforms the error due to discarding the coefficients 
locate outside the diagonal. 

Furthermore, as explained in [21], the experimental 
measurement of the diagonal Volterra kernels can be 
performed easily, employing as a test signal an 
Exponential Sine Sweep, and performing the 
deconvolution through aperiodic linear convolution with 
a suitable inverse filter. Very simple linear math is 
required for transforming the measured impulse 
responses in the Volterra vectors. 

The capability of analyzing the not-linear properties of a 
system employing the Exponential Sine Sweep signal 
were first described by Gerzon [4], and only much later 
“rediscovered” by Griesinger [5] and Farina [2]. 

The basics of the method have already been given in 
chapter 3, se here we can assume that the reader already 
knows how to extract the system’s linear response 
employing the ESS method. 

When the Exponential Sine Sweep signal is introduced 
in the non-linear system, its output also contains 
harmonic distortion products, as shown here: 

 
Figure 60. Spectrogram of the system’s response 
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It is possible to deconvolve the impulse response by 
applying to this response, by convolution, a proper 
inverse filter, which is simply the time-reversal of the 
excitation signal (3), equalized with a slope of 6dB/oct 
(time-reversal mirror plus whitening filter). This is the 
result: 

 

 
Figure 61. Spectrogram of deconvolved impulse responses 

The rightmost impulse response is the linear one, which 
is preceded by the second-order harmonic response, and 
so on. The measured impulse responses are not directly 
the Volterra kernels, but these are easily computed by 
solving a linear equation system. 

The solution of this system allows for the computation 
of the unknown diagonal Volterra kernels hi starting 
from the measured ordered impulse responses h’i. 

This is the solution for the first 5 orders, formulated in 
frequency-domain: 
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After computing the values of the kernels from the 
measured multiple impulse responses, the non-linear 
convolution can be efficiently implemented following 
eq. 28. 

7.2. Efficient partitioned convolution 

For real-time applications, indeed, the computational 
load required for performing all the multiplications and 
sums required by eq. 28 is still too large for an entry-
level PC. However, a very efficient convolution scheme 
is known, making use of frequency-domain processing, 
which is very convenient when employing highly-
optimized FFT subroutines.  

By proper partitioning the kernels to be convolved, it is 
possible to simultaneously reduce the computational 
load and to meet the expectations of a reasonably low 
processing latency. 

Some years ago, it was thought that the “optimal” 
partitioned strategy had to be searched with the goal of 
minimizing the total number of multiplications, as at 
that time this was the most costly operation for a digital 
processor. Under these assumptions, three different 
algorithms were proposed (and patented) by David 
McGrath [23], Bill Gardner [24] and Guillermo Garcia 
[25]. However, one of the authors subsequently proved 
[16] that these “advanced” algorithms, based on the not-
uniform partitioning of the kernel, are systematically 
outperformed, on modern CPUs, by the previously-
known, “suboptimal” algorithm initially proposed in 
1966 by  Stockham [26], which makes use of uniform 
partitions, thanks to the “trick” suggested by Barry Kulp 
in 1988 [27], consisting in performing the accumulation 
of the results of the convolution of the N blocks in 
frequency domain, prior of a single IFFT operation. 

7.3. Time-Variant systems 

Real-world systems often exhibit some degree of time-
variance. Acoustic propagation in rooms, for example, 
is affected by air temperature and air movement; 
loudspeakers change their radiation properties due to 
temperature variations, and most electronic devices 
contains “adaptive” circuitry performing various form 
of automatic gain control, compression, expansion, 
limiting, soft and hard clipping. In some cases the 
variation of the system’s transfer function is driven by 
the amplitude of the signal, in others it is driven by an 
external control, which can be manual or based on an 
oscillator (for example, in a flanger an oscillator 
periodically changes the tuning of a parametric filter). 

The most obvious approach for emulating time-variant 
devices is the usage of a convolver employing variable 
filtering coefficients. This can be seen to have some 
point in common with the approach known as “dynamic 
convolution”, developed by Mike Kemp [28] with the 
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goal of representing the behavior of not-linear device. 
This approach revealed to be suboptimal for the original 
goal, but it is indeed a great idea for emulating linear, 
time-variant system: if each sample being processed is 
convolved with the “proper” set of filtering coefficients, 
this can produce a faithful emulation of a time-variant 
system. 

However, “dynamic convolution” requires to employ 
the old, inefficient time-domain convolution algorithm, 
whilst we want to employ the computationally-efficient 
partitioned convolution scheme. However, it is trivial to 
see the bridge between the two techniques: a time-
variant device can be emulated by changing the set of 
filtering coefficients for each data block being 
processed, instead of for each sample. If the blocks are 
small enough, this still allows to emulate faithfully a 
system which is changing over time. 

If one has to measure, for example the set of impulse 
response of a device which changes its transfer function 
depending on the amplitude of the input signal, such as, 
for example, a compressor, one has simply to generate a 
test signal which is made of a number of exponential 
sine sweeps, each with a different amplitude, as shown 
in the following figure. 

 
Figure 62. Waveform view of the test signal 

 

 
Figure 63. Spectral view of the test signal 

After deconvolving the system’s response, one gets a 
number of consecutive sets of not-linear impulse 
response, one set for each amplitude of the input signal. 
During convolution, the set being employed will be 
changed according to the average amplitude of the 
signal being processed, evaluated block by block… 

This real-time processing is nowadays feasible thanks to 
a recently-released software package Nebula, by 
Acustica Audio [29]. More details about the features of 
this software will be presented at the forthcoming 123 
AES Convention [30]. 

 

 
8. CONCLUSIONS 

In this paper a comprehensive review of the techniques 
employed for measuring room impulse response is 
given. 

Each technique is described in detail, and its advantages 
and problems are discussed. 

The author is strongly advocating the usage of the 
Exponential Sine Sweep method, both for measuring 
room impulse responses, for electroacoustical 
measurement of loudspeaker and loudspeaker arrays, 
and for electrical characterization of the transfer 
function of audio processing equipment, including 
strongly not-linear and not-time-invariant devices such 
as compressors, flangers, etc… 

This paper shows, after 7 years of experience employing 
the ESS method, that it is superior to all the other 
known methods, and provides capabilities completely 
impossible with the pother methods. 
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