Richiami sulla resistenza termica equivalente

Ai fini della progettazione di impianti di riscaldamento o sistemi di raffreddamento si può evitare di risolvere l'equazione differenziale di Fourier per ogni situazione trasferendo il problema nell'ambito delle ben note reti elettriche: le pareti, i condotti ed ogni altra superficie o fonte di dispersione si rappresenta mediante una resistenza termica equivalente sostituendo ai potenziali le temperature ed alle correnti i flussi termici.

Per definizione di resistenza termica è:

$$\Delta T = R_T \cdot \dot{Q}$$

formalmente analoga alla legge di Ohm.

Ricordiamo alcuni risultati ottenuti dall'integrazione della legge di Fourier per geometrie piane e cilindriche utili in seguito:

 \Box lastra a facce piane e parallele di spessore d, superficie S, e coefficiente di conduzione λ :

$$R_{T,LASTRA} = \frac{d}{\lambda \cdot S}$$

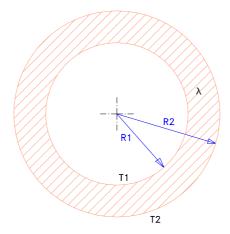
 $\ \square$ condotto cilindrico di raggio interno R_1 , raggio esterno R_2 , lunghezza L, conduzione λ :

$$R_{T,CILINDRO} = \frac{ln\frac{R_2}{R_I}}{2\pi\lambda \cdot L}$$

Esaminiamo ora la terza tipica geometria che, insieme alle precedenti, permette di risolvere agevolmente gran parte dei problemi avvalendosi dell'analogia elettrica.

Sfera cava

Consideriamo un sistema costituito da una sfera cava di raggio interno R_1 e raggio esterno R_2 costituita da materiale con conducibilità termica λ le cui superfici si trovino rispettivamente alle temperature T_1 e T_2 .



La potenza complessiva scambiata è indipendente dal raggio ed è pari al prodotto del flusso termico per la superficie in esame:

$$\dot{Q} = q(r) \cdot S = q(r) \cdot 4\pi \ r^2$$

La legge di Fourier si scrive come:

$$\dot{Q} = -\lambda \cdot 4\pi r^2 \cdot \frac{dT}{dr}$$

che conduce all'equazione differenziale del primo ordine a variabili separabili:

$$\stackrel{\bullet}{Q} \cdot \frac{dr}{r^2} = -4\pi r^2 \cdot \lambda \cdot dT$$

Integrando il primo membro tra R_1 e R_2 ed il secondo tra T_1 e T_2 :

$$\int_{RI}^{R2} \dot{Q} \cdot \frac{dr}{r^2} = -4\pi\lambda \cdot \int_{TI}^{T2} dT \qquad \dot{Q} \left(\frac{1}{R_I} - \frac{1}{R_2} \right) = 4\pi\lambda (T_I - T_2)$$

si ottiene l'espressione dell'energia emessa per unità di tempo dalla sfera:

$$\dot{Q} = \frac{4\pi\lambda(T_1 - T_2)}{\left(\frac{1}{R_1} - \frac{1}{R_2}\right)}$$

che, ovviamente, è indipendente dalla superficie sulla quale viene misurata.

A questo punto è immediato calcolare il valore di resistenza termica equivalente della sfera cava che vale:

$$R_{T,COND} = \frac{(T_1 - T_2)}{\dot{Q}} = \frac{\frac{1}{R_1} + \frac{1}{R_2}}{4\pi\lambda}$$

Cenni sullo scambio termico per convezione

Nel caso di moti convettivi la dipendenza funzionale del flusso termico ${\bf q}$ (energia trasmessa per unità di tempo per unità di superficie) dal gradiente di temperatura non è di tipo lineare, come previsto dalla legge di Fourier, tuttavia è possibile ,ed estremamente utile, ricondursi ad una forma semplice introducendo un fattore di proporzionalità tra ${\bf q}$ e $\Delta {\bf T}$:

$$q = h \cdot (T_1 - T_2)$$

dove **h**, di dimensioni W/m²K, è chiamato coefficiente di convezione nonostante tale nome debba essere riservato, secondo il Sistema Internazionale, unicamente a termini adimensionali. Analogamente possiamo definire la potenza complessiva scambiata per convezione:

$$\dot{Q} = h \cdot S \cdot (T_1 - T_2)$$

dove S indica la superficie in esame.

Il coefficiente di convezione, funzione di diverse grandezze tra cui la temperatura del materiale stesso, può essere determinato mediante la teoria dei modelli e le formule di calcolo sono tabulate per diverse situazioni.

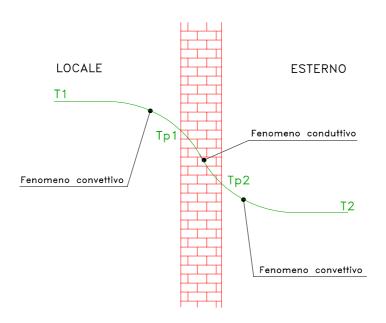
Ai fini della risoluzione di problemi di scambio termico, il contributo convettivo può essere vantaggiosamente rappresentato da una resistenza equivalente di valore:

$$R_{T,CONV} = \frac{(T_1 - T_2)}{\dot{Q}} = \frac{1}{h \cdot S}$$

Esercizio 1

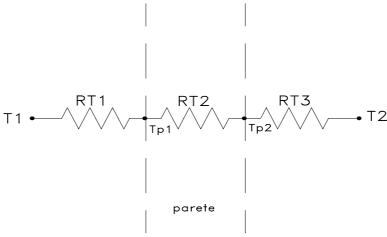
Si determini la potenza necessaria per mantenere un locale a 20°C quando la temperatura esterna è 0°C ed il muro divisorio, costituito in mattoni dello spessore di 20cm, ha una superficie di 15m².

S=15m² d=20cm=0.2m T_1 =20°C T_2 =0°C h_1 =8W/m²K h_2 =20W/m²K λ =1W/m·K



Soluzione

In prossimità della parete l'aria è soggetta a moti convettivi che ne abbassano la temperatura cosicché la rete elettrica equivalente è costituita complessivamente da tre resistenze connesse in serie, poiché il flusso di calore inizialmente attraversa lo strato d'aria interno, quindi la parete ed infine lo strato esterno.



$$R_{TI} = \frac{1}{h_1 \cdot S} = \frac{1}{8 \cdot 15} = 8.33 \cdot 10^{-3} \frac{K}{W}$$

$$R_{T2} = \frac{d}{\lambda \cdot S} = \frac{0.2}{1 \cdot 15} = 0.013 \frac{K}{W}$$

$$R_{T3} = \frac{1}{h_2 \cdot S} = \frac{1}{20 \cdot 15} = 3.33 \cdot 10^{-3} \frac{K}{W}$$

La resistenza equivalente della serie è:

$$R_{TOT} = R_{T1} + R_{T2} + R_{T3} = 8.33 \cdot 10^{-3} + 0.013 + 3.33 \cdot 10^{-3} = 0.0246 \frac{K}{W}$$

da cui si ottiene l'energia dispersa dalla parete per unità di tempo che coincide con la potenza necessaria per mantenere costante la temperatura nella stanza:

$$\dot{Q} = \frac{T_1 - T_2}{R_{TOT}} = \frac{20 - 0}{0.0246} = 813W$$

valore da confrontare con i 1500W richiesti, nella stessa situazione, trascurando gli effetti convettivi dell'aria a contatto con la parete.

Il coefficiente di convezione

La quantità di calore scambiata, $\Delta \mathbf{Q}$, dalla superficie di un corpo solido e un fluido, in un tempo infinitesimo $\Delta \mathbf{t}$, dipende dall'area della superficie di contatto \mathbf{S} , e dalla differenza di temperatura, $\Delta \mathbf{T}$, tra quest'ultima e il fluido.

In una prima approssimazione, secondo un'equazione dovuta a I. Newton, si può scrivere:

$$\frac{\Delta Q}{\Delta t} = hS \Delta T \tag{1}$$

dove h è una costante detta coefficiente di convezione.; essa rappresenta la quantità di calore

$$[h] = \left\lceil \frac{W}{m^2 K} \right\rceil \tag{2}$$

scambiata nell'unità di tempo tra la superficie unitaria e il fluido quando la differenza di temperatura tra essi è di 1°K.Notiamo che il termine coefficiente è impropriamente usato, in quanto

esso indica una grandezza priva di dimensioni fisiche, mentre \mathbf{h} ha dimensioni espresse nel S.I. di Watt al metro quadrato al grado kelvin :

Il coefficiente di convezione non è in realtà una costante, ma dipende da un numero molto grande di fattori, tra cui le caratteristiche del fluido e della corrente fluida, quali velocità, densità, comprimibilità, viscosità, dipendenti a loro volta dalla temperatura. Inoltre nello scambio termico possono diventare importanti anche fenomeni di cambiamento di stato del fluido per cui è impossibile dare un'espressione teorica di h; per la sua valutazione caso per caso si ricorre all'analisi dimensionale, un procedimento basato sulla similitudine, che nel corso delle lezioni non è stato affrontato.

Cenni sullo scambio termico per irraggiamento

Sulla falsa riga del ragionamento compiuto per affrontare i problemi di scambio convettivo, è conveniente introdurre un fattore di proporzionalità tra flusso termico e differenza di temperatura che semplifichi la relazione, considerevolmente non lineare, tra queste grandezze; l'espressione che le lega si traduce allora nella semplice equazione:

$$q = h_R(T_1 - T_2)$$

e, al solito:

$$\dot{Q} = h_R \cdot S \cdot (T_1 - T_2)$$

Il coefficiente di irraggiamento h_R (ancora una volta la nomenclatura del Sistema Internazionale e quella corrente sono in disaccordo!) si misura in W/m^2K ed è sensibilmente variabile. Molte volte è irrilevante determinare i singoli contributi convettivi e radianti perciò essi vengono valutati congiuntamente mediante il coefficiente di adduzione α definito come la somma di h e h_R . Infatti la somma delle equazioni:

$$q_{CONV} = h \cdot (T_1 - T_2)$$
$$q_{IRR} = h_R (T_1 - T_2)$$

è:

$$q_{CONV+IRR} = (h + h_R) \cdot (T_1 - T_2) = \alpha \cdot (T_1 - T_2)$$

La legislazione italiana (legge 10/91) prevede, per la progettazione di impianti di riscaldamento e di termoisolamento, l'utilizzo dei coefficienti α tabulati dalle norme UNI che stabiliscono anche le temperature ambientali di riferimento nelle diverse zone del paese.

Naturalmente l'utilizzo di queste formule conduce a risultati tanto più precisi quanto più è piccola la differenza tra le temperature considerate, cosicché l'arco di curva $q(\Delta T)$ possa essere approssimato al meglio.

Esempio numerico

Si determini la potenza necessaria per compensare la dispersione di un serbatoio contenente acqua alla temperatura di 100°C se all'esterno vi sono 0°C. La parete del contenitore è composta da una lastra in ferro, di spessore 5cm, rivestita da un'alterna serie di pannelli, spessore 10cm, in cemento dalle caratteristiche differenti.

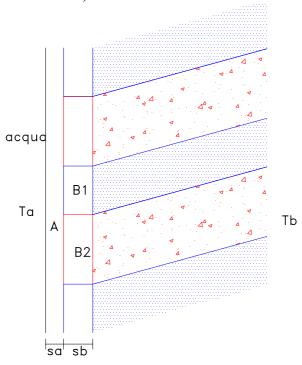
```
s_A=5cm=0.05m

s_B=10cm=0.1m

T_A=100°C

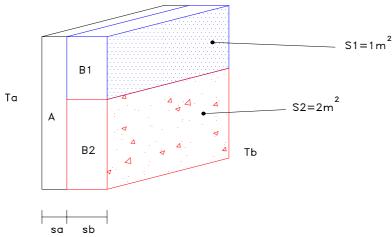
T_B=0°C
```

$$\begin{split} &h_A = 200 W/m^2 K \\ &h_B = 10 W/m^2 K \\ &\lambda_A = 60 W/m \cdot K \ \ (lastra \ in \ ferro) \\ &\lambda_{B1} = 1 W/m \cdot K \ \ (pannello \ in \ cemento \ 1) \\ &\lambda_{B2} = 0.1 W/m \cdot K \ \ (pannello \ in \ cemento \ 2) \end{split}$$



Soluzione

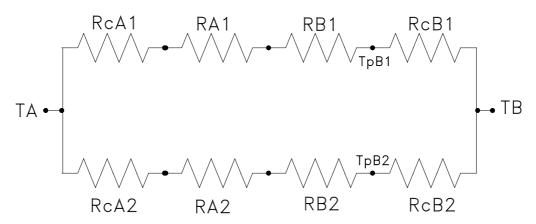
Consideriamo una porzione elementare di sezione complessiva 3 m²:



La rete elettrica equivalente, nella quale le temperature di parete Tp_{B1} e Tp_{B2} sono giustamente considerate diverse, è la seguente:



Ai fini di semplificare i calcoli successivi è possibile tracciare un secondo schema che, tuttavia, risulta meno aderente alla realtà; il trucco consiste nel considerare la lastra di ferro ripartita in due elementi, distinti e congiunti, la cui sezione è pari a quella dei pannelli in cemento a contatto:



resistenza di convezione acqua:

$$Rc_{AI} = \frac{I}{h_A \cdot S_I} = \frac{I}{200 \cdot I} = 0.005 \frac{K}{W}$$

resistenza di conduzione ferro A1:

$$R_{AI} = \frac{s_A}{\lambda_A \cdot S_I} = \frac{0.05}{60 \cdot I} = 8.333 \cdot 10^{-4} \frac{K}{W}$$

resistenza di conduzione cemento B1:
$$R_{BI} = \frac{s_B}{\lambda_{BI} \cdot S_I} = \frac{0.1}{1 \cdot I} = 0.1 \frac{K}{W}$$

resistenza di convezione aria:

$$Rc_{BI} = \frac{1}{h_B \cdot S_I} = \frac{1}{10 \cdot 1} = 0.1 \frac{K}{W}$$

La resistenza totale del primo ramo è la somma dei singoli contributi:

$$R_{TOT,I} = Rc_{AI} + R_{AI} + R_{BI} + Rc_{BI} = 0.005 + 8.3 \cdot 10^{-4} + 0.1 + 0.1 = 0.205 \frac{K}{W}$$

resistenza di convezione acqua:

$$Rc_{A2} = \frac{1}{h_A \cdot S_2} = \frac{1}{200 \cdot 2} = 0.0025 \frac{K}{W}$$

resistenza di conduzione ferro A2:

$$R_{A2} = \frac{S_A}{\lambda_A \cdot S_2} = \frac{0.05}{60.2} = 4.167 \cdot 10^{-4} \frac{K}{W}$$

resistenza di conduzione cemento B2.
$$R_{B2} = \frac{s_B}{\lambda_{B2} \cdot S_2} = \frac{0.1}{0.1 \cdot 2} = 0.5 \frac{K}{W}$$

resistenza di convezione aria:

$$Rc_{B2} = \frac{1}{h_B \cdot S_2} = \frac{1}{10 \cdot 2} = 0.05 \frac{K}{W}$$

$$R_{TOT,2} = Rc_{A2} + R_{A2} + R_{B2} + Rc_{B2} = 0.0025 + 4.167 \cdot 10^{-4} + 0.5 + 0.05 = 0.553 \frac{K}{W}$$

Note le temperature T_A e T_B è possibile calcolare le potenze termiche dissipate dai due rami:

$$\dot{Q}_{I} = \frac{T_{A} - T_{B}}{R_{TOT,I}} = \frac{373.15 - 273.15}{0.205} = 488W \ \dot{Q}_{2} = \frac{T_{A} - T_{B}}{R_{TOT,2}} = \frac{373.15 - 273.15}{0.553} = 181W$$

La potenza richiesta per far fronte alla dissipazione da parte della parete del serbatoio è:

$$\overset{\bullet}{Q} = \overset{\bullet}{Q_1} + \overset{\bullet}{Q_2} = 488 + 181 = 669W$$

Calcoliamo, infine, le temperature di parete dei blocchi in cemento:

$$Tp_{BI} = T_B + \dot{Q}_I \cdot Rc_{BI} = 0 + 488 \cdot 0.1 = 48.8 ^{\circ}C$$

$$Tp_{B2} = T_B + \dot{Q}_2 \cdot Rc_{B2} = 0 + 181 \cdot 0.05 = 9^{\circ}C$$

In realtà la variazione di temperatura non è netta infatti, in corrispondenza dei giunti strutturali B1/B2, si ha passaggio di calore che aumenta inevitabilmente la potenza dispersa; per calcoli simili è quindi consigliabile adottare un coefficiente di sicurezza che consideri questi fenomeni secondari.

