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ABSTRACT 
Higher Order Ambisonics (HOA) provides a rational and flexible way for spatial encoding, conveying and rendering 
of 3D sound fields. For this reason it has known a growing interest over past years. Nevertheless, representing near 
field sources and recording natural sound fields has been addressed only quite recently. This raises the problem of 
"infinite bass-boost", which a recent approach (NFC-HOA) solves while being fully equivalent with spherical 
harmonics representation. To better handle problematic cases where bass-boost remains excessive, the present study 
discusses the actual usefulness of some spatial components depending on the area targeted for sound field 
reconstruction. Therefore it suggests frequency dependent restriction of spatial resolution by high-passing spatial 
components. As a particular result, it shows that a much moderated amplification is sufficient to efficiently model 
sound sources at any distance, and derives a safe and fine solution to simulate sources inside the listening area. 

 

1. INTRODUCTION 
Ambisonics were introduced decennials ago [1] as a 
way to represent and render 3D sound fields, that 
surpasses traditional two-channel stereophony and even 
quadraphonic systems. Early Ambisonics relies on a 
minimal, but sufficient, directional description: the so-
called B-Format (omnidirective (W) and bidirective 
components X, Y, Z) that can be obtained by 
conventional recording means.  It has the advantage of 
being adaptable to many different loudspeaker rigs 
(either 2D or 3D). Nevertheless its low spatial 
resolution (1st order) implies some limitations especially 

regarding the sweet spot, and it cannot offer large scale 
sound field reproduction. Extension of B-format to 
higher spatial resolutions (Higher Order Ambisonics or 
HOA) has been knowing a growing interest for nearly a 
decennial now [2-6], and it has been shown to enlarge 
the area of correct acoustic reconstruction (and therefore 
the sweet spot). But until the last few years, it has been 
restricted to virtual encoding (no practical recording 
system) and furthermore to directional considerations 
(angular pan-pot with no distance coding nor control of 
the synthesized wave front curvature). 
Among recent studies, some work [7, 8] addressed the 
modeling of finite distance sources and the problem of 
representing it with finite amplitude signals. A solution 
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was proposed by introducing at the very encoding stage 
a pre-compensation of the reproduction loudspeakers 
near-field, which bounds problematic bass-boost effects. 
Targeted applications are virtual source coding with 
distance control, but also the design of 3D microphone 
array processing. As a major result, [7] introduced Near-
Field Control (or "Distance Coding") Filters that 
complete the virtual source spatial encoding scheme, 
which was restricted to purely directional coding before. 
Applied to relatively high order encoding and rendering 
systems, these filters have been shown to be capable of 
synthesizing curveted wave fronts over large areas, 
especially for virtual sources that are outside the 
loudspeaker enclosure. The synthesis of "inside" sources 
is shown to be possible to a certain extent, though 
involving electro-acoustic bass-boost that becomes 
impracticable when the source distance is too small. 

One characteristics of this previous work is that it aimed 
at providing encoding means that are fully 
representative (i.e. over the full frequency axis) of the 
theoretical spherical harmonics decomposition. The 
present paper discusses the actual usefulness of encoded 
spatial components as a function of the frequency, 
depending on their order m and the radius of a targeted 
reconstruction area. As it mostly focuses on radial 
characteristics of the sound field encoding and 
rendering, it lets the reader refer to previous literature 
(e.g. [7]) for more details about directional properties 
and conventions. 

2. PREVIOUS WORK ON HOA 

2.1. Higher Order Ambisonics Basics 

2.1.1. Sound field decomposition 

There are several ways of explaining how Higher Order 
Ambisonics represents the sound field. By analogy with 
well known signal processing concepts, one can say that 
it performs a kind of spherical Fourier Transform of all 
acoustic events (waves) coming from all around a 
reference point O. This yields spherical harmonics 
signals (spatial components Bmn

σ) associated to different 
angular frequencies. More formally, spherical 
harmonics decomposition of an acoustic pressure field p 
comes from writing wave equation (∆+k2)p=0 (with 
wave number k=2π f/c, frequency f and sound speed c) 
in the spherical coordinate system, where any point r  is 
described by its direction (azimuth θ and elevation δ ), 
and its distance (radius r) with regards to a reference 

point O. This leads to the so-called Fourier-Bessel 
decomposition: 

0 0 , 1
( ) ( ) ( , )m

m mn mn
m n m

p r j j kr B Yσ σ

σ

θ δ
∞

= ≤ ≤ =±

= ∑ ∑ , (1) 

Resulting spatial (or ambisonic) components Bmn
σ are 

associated with angular functions ),( δθσ
mnY  called 

"spherical harmonics" (further defined in [7]). They 
form groups of (2m+1) components Bmn

σ having the 
same "order" m, and are respectively associated to radial 
functions jm(kr), also called "spherical Bessel 
functions". Their curves illustrated in Figure 1 show 
how these groups of components contribute to the sound 
field as a function of the distance from center O: the 
higher the order m, the farther the mth order components 
group contributes to sound field description compared 
with the wavelength. This also reflects ambisonic 
components as being related to spatial sound field 
derivatives: higher order derivatives help approximating 
the sound field over a larger neighborhood of reference 
point O.  

 

Figure 1 Spherical Bessel functions jm(kr) 

Of course, ambisonic systems practically rely on a finite 
highest order M (such that m≤M), thus a finite number 
K3D=(M+1)2 of components Bmn

σ. Moreover, if only a 
2D, horizontal rendering is addressed as often for 
practical reasons, then only the subset of "horizontal" 
components Bmn

σ  (such that n=m) might be retained, 
which gives a total number of K2D=2M+1 components. 
Finally, let's recall that earlier B-Format is a 1st order 
representation, composed by omnidirective component 
W=B00

+1 (pressure field) and bidirective components 
X=B11

+1, Y=B11
−1, Z=B10

+1 (related to pressure gradient 
or acoustic velocity). 
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2.1.2. Encoding equations (for individual 
sources) 

Encoding equations are used to compose virtual sound 
scenes with a number of virtual sources positioned in 
the space. To define spatial encoding equations, one 
considers an individual sound source (which direction is 
described by unitary vector Su , or azimuth θS and 
elevation δS) as typically creating either a plane wave 
(far field source) or spherical wave (near field source at 
point 

Suρ ρ= , i.e. distance ρ). In such cases, pressure 
field is described by: 

.( ) jkr up r Se ρ=  (plane wave) (2) 

( )
jk r

jk
ep r S

r e

ρ

ρ
ρ

ρ

− −

−=
−  (spherical wave)  (3) 

with S describing the conveyed signal, as measured at 
the reference point O. Performing spherical harmonics 
decomposition (1) over these definitions provides the 
corresponding "encoding equations", i.e. the expression 
of spatial components Bmn

σ as a function of the virtual 
source position and signal. 

It comes that encoding equation of a plane wave merely 
consists in weighting signal S by real factors depending 
on the wave incidence, which are nothing other than 
spherical harmonic functions: 

. ( , )mn mn S SB S Yσ σ θ δ=  (4) 

We recall that a further discussion on directional 
encoding functions Ymn

σ is given in [7] and is not 
reported in the present paper, which focuses on radial 
characteristics of the sound field.  

Compared with the plane wave case, the following 
spherical wave encoding equation (for a source at a 
distance ρ) introduces a frequency dependent factor 
Fm(ω ) that models the near field effect and therefore the 
wave front curvature: 
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where the hm
- are the outgoing/divergent spherical 

Hankel functions. Near Field modeling functions 
( / ) ( )c

mF ρ ω  (also written ( )mF kρ ) are characterized by 
an "infinite" bass-boost (for m≥1) with a -
m×6dB/octave low frequency slope (Figure 2), and 
could be implemented as integrating filters. 
Nevertheless, these have no practical application since 
they are unstable by nature. Therefore mathematical 
encoding equation (5) is not practicable as is. A 
workable alternative is proposed in [7, 8] and recalled in 
2.2. The present paper develops a new and even safer 
solution in 3. 

 

Figure 2 Low frequency infinite boost of ambisonic 
components due to near field effect Fm(kρ). Curves are 

shifted to the right (resp. the left) when the source 
distance ρ decreases (resp. increases). 

2.1.3. Natural sound field encoding with a 
microphone array 

In the following, we briefly recall the objectives and 
principle of a sound field recording system based on a 
discrete microphone array. For a bit more formal 
description, reader can refer to [8-11].  

Let's first introduce the concept of spatial sampling of 
the sound field, which is achieved by measuring it at 
different points in the space by means of a microphone 
array. Considering that the measured sound field can be 
expressed in terms of spherical harmonic (regarding a 
reference point typically placed at the center of the 
array), each measured signal contains a "portion" or 
"sample" of these spatial components, according to its 
position and directivity. Therefore, defining the 
appropriate microphone signal processing to extract 



Daniel and Moreau Improved Sound Field Coding with HOA
 

AES 116th Convention, Berlin, Germany, 2004 May 8–11 
Page 4 of 14 

spatial components Bmn
σ (HOA signals), is a matter of 

inverting spatial sampling equations.  In the more 
general case, this leads to a matrix of filters [9]. When 
microphone capsules are distributed concentrically (e.g. 
over a sphere), the processing can be factorized into one 
matrix with real gains followed by a set of equalizers 
EQm [8, 12]. This is what we will further comment here. 
The matrix computes weighted sums and differences 
from the measured signals to get a rough (unequalized) 
estimation of spatial derivatives of different orders (i.e. 
HOA components). Then the equalizers "normalize" this 
estimation, depending on the order m and the array 
radius regarding the wave length (i.e. the radial position 
kr of measurement points on the Bessel curves of Figure 
1), and also on the capsules directivity. A problem 
arises especially at low frequencies: information on 
spatial derivatives is as thin as wavelength is high with 
respect to the microphone array (small differences 
between measured signals). Since the proportion of 
HOA components contained in measured signals is 
known to be small, equalizers have to process a greater 
amplification to retrieve them (as shown by Figure 3).  
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Figure 3 Equalization (EQm) required in microphone 
array processing to theoretically retrieve ambisonics 

components for pressure microphones distributed over a 
rigid sphere (radius Rmic=10 cm). Without (dotted lines) 
and with compensation of loudspeaker near field (cont. 

lines, with Rspr=1m).  

Theoretically, equalizers applied to respectively mth 
order components would cause an infinite bass-boost 
(with generally -m×6dB/octave as a low-frequency 
slope, shown as dotted lines in Figure 3). Solution 

developed in 2.2 introduces finite low frequency 
amplification. 

2.1.4. Decoding and rendering 

Since it isn't the topic of this paper, we will simply 
make a brief summary of the principle of spatial 
decoding over loudspeakers. Further considerations can 
be found e.g. in [3, 6, 8]. Considered loudspeakers 
arrays are typically concentric (either circular or 
spherical), centered on the reference point O, and with 
preferably a regular angular distribution. That's the case 
we'll use in this paper for some illustrations. Earlier 
literature considered loudspeaker as emitting plane 
waves (i.e. in far field) from the center point of view. 
Under this assumption, the decoding process applied to 
the set spatial components Bmn

σ to get loudspeaker 
signals merely consists in a matrix D with real gain 
factors, the aim being to recompose the encoded sound 
field at the center O by applying (4) to each loudspeaker 
contribution. It has more recently highlighted [6] that 
the finite distance of loudspeakers should be considered, 
which requires compensating their near field effect, as 
developed in next section. 

Notice that spatial decoding can be also defined for non 
concentric array shapes at the expense of a higher 
computational cost. For convenience, sound field 
reconstruction will be illustrated considering a regular, 
circular loudspeaker array in the rest of the paper. 

2.2. Near-Field Compensated HOA 

2.2.1. Introducing Near-Field pre-Compensation 

When reproducing a sound field by means of 
loudspeakers, their finite distance causes a near field 
effect that has to be compensated, so that encoded wave 
fronts are accurately synthesized with their proper 
curvature, instead of being distorted by the loudspeakers 
waves' curvature. Now, combining the near field effect 
Fm(kρ) of virtual sources (Figure 2) with the inverse of 
the loudspeakers one Fm(kR) implies that the -
m×6dB/oct low frequency slope is stopped (at a given 
frequency) by a slope with opposite value. The same 
property arises with equalization filters EQm. Since 
compensation of loudspeakers near field is required for 
a correct rendering, [7] suggests introducing it from the 
encoding stage. This yields a variant definition of HOA 
encoding, called Near Field Compensated (NFC) HOA: 
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NFC( / )

( / )

1
( )

R c
mn mnR c

m

B B
F

σ σ

ω
=  (6) 

This ensures that any near field sources and therefore 
any natural sound field are modeled and represented by 
finite amplitude signals NFC( / )R c

mnBσ . Note that such 
spatial description remains fully equivalent to the 
original spherical harmonics decomposition. Moreover, 
even if it involves a reference distance R as an intrinsic 
parameter (representative to the loudspeaker array size), 
this is not a restriction. Indeed, adaptation from distance 
R1 to R2 is simply performed by:  

1
2 1
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The great advantage of NFC-HOA is that encoding tools 
associated to this new description now involve stable 
filters. 

2.2.2. Distance coding filters  

Reporting new sound field description (6) in spherical 
wave encoding equation (5) yields the following 
encoding formula for a finite distance source: 

NFC( / ) NFC( /c,R/c). ( ). ( , )R c
mn m mnB S H Yσ ρ σω θ δ= , (8) 

featuring distance coding transfer functions: 

( / )
NFC( /c,R/c)

( / )

( )( )
( )

c
m

m R c
m

FH
F

ρ
ρ ωω

ω
= , (9) 

which combine the near field effect of the virtual source 
and the compensation of the reproduction loudspeakers' 
one, as previously explained. These transfer functions 
can be realized as stable filters with finite LF 
amplification. Previous paper [7] further describes how 
to design and implement them as parametric, minimal 
cost IIR filters. 

 

Figure 4 NFC filters frequency responses: finite 
amplification of ambisonic components from pre-

compensated Near Field Effect (dashed lines: ρ/R=2/3; 
cont. lines: ρ/R=2). 

Low frequency amplification is proportional to order m 
and depends on distance ratio R/ρ: more precisely it 
equals mx20log10(R/ρ) (in dB). Therefore distance 
coding filters cause an attenuation (at low frequencies) 
when the virtual source is beyond the loudspeaker array, 
and an amplification when the virtual source is "inside", 
as shown by Figure 4. 

2.2.3. Equalizers for microphone processing 

Like near field modeling, theoretical equalization 
involved in microphone array processing would also 
present a -m×6dB/oct low frequency slope for each 
order m. Near Field Compensation 1/Fm(kR) helps 
stopping it thanks to an opposite slope, as shown by 
Figure 3. Note that the illustrated case (Figure 3) 
involves a microphone radius Rmic=10 cm that is small 
compared with the loudspeakers array radius Rspkr=1m. 

2.3. Problematic cases in terms of bass-boost 

Near-Field pre-Compensated HOA has solved the 
problem of representing the sound field with finite 
amplitude (ambisonic) signals and at the same time, the 
problem of involving signal processing with finite 
amplification. Nevertheless, even being now limited, 
low frequency amplification appears to be excessive in 
some particular cases for practical applications.  
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2.3.1. Sound field recording with small size 
microphone array 

Here we consider the problem of sound field recording 
with a microphone array of relatively small size with 
regard to typical loudspeaker distances. Even with NFC, 
equalization filters involved for higher order 
components present great low-frequency amplification 
(Figure 3). There is a simple interpretation of this 
excessive estimation effort: at low frequencies and/or 
for higher order, the system tries to catch spatial 
information that is very thin at the measurement points 
and is substantial only at a distance from the 
microphone array.  

As a result, the system mostly amplifies microphone 
background noise, calibration errors, capsules 
positioning error, and more generally any deviation 
from the theoretical model of sound field encoding by 
capsules (including directivity model). Recent studies 
have introduced sensible criteria to reduce this 
amplification: in [10] equalization filters are limited 
according to a "maximal white noise gain" criterion; in 
[9] a "regularization parameter" λ is introduced in the 
"filtering matrix" computation (when inverting the 
spatial sampling equations as shortly explained in 
2.1.3), as a compromise between signal SNR and spatial 
SNR.  The method proposed in the present paper (in 
3.2) and further developed in [11], involves another 
criterion that predicts the quality of sound field 
reconstruction. 

2.3.2. Encoding of virtual source "inside" the 
loudspeakers enclosure 

For virtual source encoding and rendering, NFC-HOA 
as previously introduced is very effective for sources 
that are beyond the loudspeaker array, but problems 
progressively occur with sources "inside" the 
loudspeaker enclosure. As a matter of fact, even if 
encoded ambisonic signals of great amplitude can be 
digitally conveyed using e.g. with floating point 
representation, the later diffusion of decoded 
loudspeakers signals become prohibitive regarding 
electro-acoustic considerations. Their amplitude is 
indeed given by the pan-pot law (for an N-loudspeaker 
regular and circular array): 

NFC( , ) ( / , / )

1

1( , , ) 1 2 ( ).cos( )
M

R c NFC c R c
m

m
G H m

N
ρρ γ ω ω γ

=

⎛ ⎞
= +⎜ ⎟

⎝ ⎠
∑

 (10) 

where γ is the angle between virtual source and each 
considered loudspeaker. It shows how the bass-boost of 
HOA components (see top curves of Figure 4) is 
reported in loudspeakers signals. 

Figure 5 (time domain simulation) shows that huge 
amplitude interfering waves are present between the 
disk excluding the virtual source and the loudspeaker 
array. This excessive energy disappears as loudspeakers 
waves have constructively combined to each others to 
recompose expected spherical wave. 

 

Figure 5 Two snapshots (time domain) of spherical 
wave synthesis with NFC-HOA for an enclosed virtual 
source (r=1m<R=1.5m). Left: 15th order rendering over 
a 32-loudspeaker circular array. Right: reference wave 

from a single source. 

3. A SAFE ENCODING STRATEGY 

Problems of excessive amplification discussed above 
arise from seeking for a sound field representation that 
is strictly equivalent to mathematical definition (1) of 
spherical harmonics decomposition. By "strictly" we 
mean: "over the full frequency scale". In this part of the 
paper, we further discuss the usefulness of spatial 
(HOA) components as a function of their respective 
order and the frequency, considering the size of a 
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targeted reconstruction area. Then we derive solutions 
for workable microphone array processing and virtual 
source encoding. Particularly interesting results arise for 
the simulation of sources inside the loudspeaker array 
enclosure, and even inside the listening area. 

3.1. Characterizing representation usefulness 

3.1.1. Quality of sound field approximation for a 
given radial extent 

To address the quality of the sound field reconstruction 
as a function of the representation order M ("spatial 
resolution"), we introduce separately "2D" and "3D" 
approximations, as being representative to what a 
horizontal (e.g. circular) or respectively a 3D (e.g. 
spherical) loudspeaker array would achieve. For 
simplicity, we consider that such sound field 
approximation is sensibly expressed1 by respectively a 
cylindrical (11) or a spherical (12) harmonics expansion 
series truncated to order M. Applied to both cases of a 
plane wave (2) and a spherical wave (3), this yields: 

(2 )
0

1

ˆ ( ) ( ) 2 ( ) ( ) cos
M

D m
M m m

m

p r S J kr j J kr F k mρ γ
=

⎛ ⎞
= +⎜ ⎟

⎝ ⎠
∑

 (11) 

(3 )

0

ˆ ( ) (2 1) ( ) ( ) (cos )
M

D m
M m m m

m
p r S m j j kr F k Pρ γ

=

= +∑  (12) 

where γ is the angle between the measurement point 
rr ru=  and the wave incidence 

Su  ( cos .S ru uγ = ). For a 
plane wave, one set the source distance to ρ = ∞, thus 
Fm(kρ)=1 for any k and m.  

For further comments and illustrations, let's concentrate 
on 2D approximation (11), which suits to the most usual 
application cases. The series involves radial dependent 
terms Jm(kr) (for plane wave) or Jm(kr)Fm(kρ)  (spherical 
wave) that reflect the contribution of the mth order group 
of spatial components {Bmn

σ} to the sound field. These 
contributions are shown as functions of the radius r: in 
Figure 6 for a relatively low frequency f = 100 Hz, and 
in Figure 7 for a higher frequency f = 500 Hz.  

                                                           
1 Equivalence is shown when loudspeakers in are far 
field and numerous compared with the number of spatial 
components (K=2M+1 for 2D and K=(M+1)2 for 3D). 

 

Figure 6 Radial contribution of spatial components Bmn
σ 

of orders m=0 to 10 and for a low frequency f=100Hz in 
the cases of a plane wave (top) and a spherical wave 

(bottom, with ρ=1m), as quantified by functions |Jm(kr)| 
and |Jm(kr).Fm(kρ)| respectively.  

 

Figure 7 Same as Figure 6 but for a frequency f=500Hz 

3.1.2. Considerations on the plane wave case 

A general property arises by considering Jm(kr) curves 
(or even jm(kr) curves of Figure 1): it says that spatial 
components begin to substantially contribute to the 
sound field at the distance r (from O) that is as high as 
the order m is high for a given frequency, this distance r 
being furthermore proportional to the wavelength (and 
therefore as high as the frequency is low). Turned in 
another way: if one targets a reconstruction area 
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characterized by a radius (e.g. rtarget=1m), it can be 
deduced that higher order components are significantly 
useful to the reconstruction only above a certain 
frequency that increases with the component order m. 

This is particularly well shown in the case of a plane 
wave (top of figures): contributions are significant over 
a 1 meter radius area up to order 2 or 3 for the low 
frequency f = 100 Hz (Figure 6), and up to 9 or 10 for 
the higher frequency f = 500 Hz (Figure 7). 

3.1.3. Special considerations on spherical wave 

The spherical wave case (bottom of figures, with a 
source distance ρ =1m) gives rise to special comments. 
What is noteworthy is that each shown contribution 
Jm(kr)Fm(kρ) (for m≥1) is the result of two antagonist 
trends: when frequency decreases and/or the order m 
increases, Jm(kr) gets smaller values over a given radius 
range (and "peaks" move to farther distances) while the 
overall contribution is increased by the near field effect 
Fm(kρ). A balance point seems to settle around the 
source distance ρ where curves seems to converge to a 
same amplitude for high orders m (see bottom of Figure 
6). At the left of this balance point (smaller distances) 
amplitude of contributions is bounded, whereas it 
becomes huge (divergent) on the right part (farther 
distances), which constitutes an "energetic barrier", in a 
way.  
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Figure 8 Relative error of sound field reconstruction 
along the semi-axis oriented towards the wave incidence 

(γ =0), in conditions similar to Figure 6. 

As a consequence, reconstruction error (bottom of 
Figure 8 and Figure 9) is always infinite or unacceptable 
for radius r≥ρ whatever the truncation order M, since 
the accumulation of missing higher order contributions 
diverge. Therefore true reconstruction cannot go beyond 
nor even reach the source distance, what was expected 
from the theory: it's indeed both a physical impossibility 
and a limit of representation (1) which is valid only in a 
centered free field sphere (thus excluding any sound 
source). Furthermore, pressure field should be 
theoretically infinite at the source place.  
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Figure 9 Same as Figure 8 for conditions similar to 
Figure 7 (f=500Hz) 

To summarize, radial expansion of the sound field 
reconstruction is bounded by the source radius ρ 
(bottom of Figure 8 and Figure 9), unlike with a plane 
wave (top of Figure 8 and Figure 9). Thus the target 
"valid reconstruction area" is necessarily limited by the 
source distance. Introducing higher order components 
still improves the reconstruction over this targeted area, 
but not as efficiently as for a plane wave. The same kind 
of conclusion applies anyway: for a given target area, 
the highest order of significantly contributing (i.e. 
"useful") spatial components decreases when the 
frequency decreases. 

Though the present discussion on spherical waves relies 
on 2D sound field approximation or reconstruction, its 
conclusions apply to 3D approximation as well. It's 
worth mentioning that reconstruction is even better 
(computed error is smaller) with a 3D approximation, 
though being similarly bounded by the source radius. 



Daniel and Moreau Improved Sound Field Coding with HOA
 

AES 116th Convention, Berlin, Germany, 2004 May 8–11 
Page 9 of 14 

Indeed the theory foresees that a 2D array cannot 
properly render the 1 r ρ−  amplitude law that is 

characteristics to spherical waves, but rather a 1 r ρ−  

law. By the way, this is the reason for the so-called 
"stationary phase approximation" applied for Wave 
Field Synthesis [5, 13]. On the other hand, later Figure 
13 shows that 2D reconstruction is able to properly 
render the wave front curvature (phase characteristics). 

3.1.4. A safe representation: the concept of 
"useful high frequency bands" 

The discussion above can be summarized as follows: 
according to a target radius for the reconstruction area, 
spatial (HOA) components of orders m≥1 appear to be 
useless in a low frequency band that increases with 
increasing orders m, and also with decreasing target 
radius. Therefore one can avoid excessive amplification 
effects (mentioned in 2.3) that occur in these low 
frequency bands when processing near field source 
simulation or natural sound field recording (with a 
microphone array) as described in previous literature [7, 
8]. 

Typical useful high frequency bands of HOA 
components are shown in Figure 10. Thin leaning line 
draws a typical frequency limit law as a function of the 
order m and depending on the target radius rtarget. 

 

Figure 10 Schematic view of "useful" high frequency 
bands for the first few groups (colored horizontal bars) 

of spatial components (mentioned on the right part) 
according to their order m.  

3.1.5. Frequency dependent truncation by high-
passing HOA components 

So we come to the following strategy for the design of 
safe coding tools, that is: applying a high-pass filtering 
to HOA components as suggested by Figure 10, which 

is similar to applying a frequency dependent truncation 
of the spatial representation order.  

For now, we can give some first requirements on the 
low frequency slope of high-pass filters. In cases (see 
2.3) where NFC doesn't prevent from excessive bass-
boost, Hm

NFC (or EQm) curves (Figure 3, Figure 4) 
present a -m×6dB/oct slope between the boosted low 
frequency band and the high frequency band where 
amplification is moderated or null. To efficiently limit 
the bass-boost, high-pass filters shall stop this slope, 
thus present themselves at least an m×6dB/oct slope 
with a sharp transition. 

Following sections further reveal appropriate frequency 
limits definition with respect to each application case: 
microphone array processing for natural spatial sound 
field recording, and especially virtual source encoding 
with consideration to sources inside the listening area. 

3.2. Application to sound field recording  

In the context of recording system design, there is no 
prior knowledge on the sound field composition, 
especially about the presence of near field sources or 
not. Since we consider the problem of relatively small 
microphone arrays, we will also consider that most of 
real sound sources that create the sound field are in far 
field. Therefore we assume that measured sound field is 
composed with plane waves and we rely on error curves 
on top of Figure 8 and Figure 9 to appreciate the quality 
of reconstruction as a function of the target area radius 
and of the frequency. Quadratic integrated error curves 
could be also used. For a target radius and a given 
component order m, a simple error threshold can be 
used to derive the frequency limit below which it 
becomes useless to accurately model higher order 
components. Then such frequencies have to be reported 
on equalization curves of Figure 3, which are 
representative to noise amplification too, apart from a 
level offset related to the number of capsules [8]. 
Therefore a maximum useful amplification is derived 
with respect to the targeted area radius. If such 
amplification is judged still excessive, ambitions of 
sound field estimation can be moderated by choosing a 
smaller target radius. Derived limit frequencies are 
characteristic to "useful frequency bands" as shown by 
Figure 10, and used as parameters of high-pass filters as 
introduced in 3.1.5. This strategy and its results are 
further developed in [11]. 
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3.3. Application to virtual source encoding 

3.3.1. Toward a relevant criterion for truncation 

For the case of simulating a finite distance source, one 
recalls that the possible sound field reconstruction is 
bounded by its distance ρ. Therefore the target radius 
should be fixed a bit lower than ρ: rtarget=α.ρ with α <1. 
But to define frequency limits of HOA components 
usefulness, it is no longer relevant to rely on a maximal 
tolerated error criterion at distance rtarget, as used in 3.2. 
Indeed fixing rtarget is somewhat arbitrary and most of 
all, a small radius change may imply great error 
changes. Moreover there is an irreducible error with 2D 
approximation, related to the badly rendered amplitude 
law discussed in 3.1.3.  

A more relevant criterion is found by taking care of 
sources simulated "inside" the loudspeaker array (at 
distance ρ<R) and possibly inside the listening area. 
The idea is to consider not only the correct 
reconstruction area (bounded by the source distance) but 
also sound field characteristics over the remaining area 
(beyond the source distance). Bottom of Figure 6 and 
Figure 8 shows that at a relatively low frequency, spatial 
components of relatively high order (m>2, here) yields 
little improvement to the reconstruction at radius r≤ρ, 
and on the other hand, have unfortunate consequences 
regarding sound field properties at radius r>ρ: they 
cause great energy levels that sound annoying and 
unrealistic to listeners in this area. In a few words, one 
has to find a good compromise between reconstruction 
improvement below the source distance and acceptable 
level properties of the sound field composed beyond. 

3.3.2. Energy focalization on the virtual source 
location 

To refine our criterion, a first approach is to point at the 
frequency for which spatial components of a given order 
m have their higher "usefulness" (or contribution) on the 
source location. Top of Figure 11 shows Jm(kr).Fm(kρ) 
curves for ρ=1m (like bottom of Figure 6 and Figure 7) 
and for the frequency (f = 462.2 Hz) such that 
Jm(kr).Fm(kρ) (or merely Jm(kr)) has its maximum at 
r=ρ for m=7. Bottom shows the absolute value of Mth 
order truncated series (11) (i.e. sound field "2D" 
approximations) on semi-axis ( , )O uρ

passing through 

the virtual source (γ=0). Incidentally, we observe that 
for M=m+1=8 the curve reaches its maximum value at 
the virtual source location r=ρ.  

 

Figure 11 Top: radial contribution Jm(kr).Fm(kρ) of 
spatial components of various orders m for a source at 

distance ρ. Bottom: associated sound field 
approximations (truncated series in absolute value) on 

the semi-axis passing through the virtual source. Dotted 
curve indicates ρ/|r-ρ| amplitude law as a reference 

(case of a true spherical wave). 

 

 

Figure 12 Same comments as for  

Figure 11, but with spherical Bessel functions and "3D" 
sound field approximation.  
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Similar observation applies for a "3D" approximation of 
the sound field, involving spherical Bessel functions 
jm(kr) and truncated series (12) with γ=0 (Figure 12). It 
is worth noticing that reproduced amplitude law looks 
like the theoretical one (dotted curve) much better than 
with "2D approximation" (Figure 11). Moreover, the 
amplitude peak observed at the virtual source location 
(for M=8 on the figure) is higher. 

In both 2D and 3D cases, an interesting feature is that 
amplitude of sound field approximation (for the same 
truncation order M=8 in the figures) falls down to 
plausible values, though in a non-monotonic way, when 
moving beyond (thus away from) the virtual source. 
That's a property that should have appreciable auditory 
effects on listeners placed in such off-centered area.  

Figure 13 provides 2D visualizations of approximated 
and synthesized sound fields. A color scale is used for 
amplitude field (see bottom views as a reference) while 
wave front are drawn as constant-phase lines, with an 
inter-line propagation time that corresponds to a 20cm 
distance for a natural wave. It confirms that focalization 
on virtual source (at distance ρ=0.75m) occurs with a 
M=8th order restriction at the expected frequency 
flim

(M=8) = 619 Hz, while wave front curvature looks 
quite acceptable over the centered disk just excluding 
the source. Wave front shape is better refined using 
higher orders (e.g. M=12), but it is at the expense of a 
huge energy field at radius greater than the source 
distance ρ.  

Finally, one notices a difference in amplitude field when 
comparing series truncation (left) with reconstruction by 
the loudspeaker array (right): for the latter, focalization 
spot still includes the virtual source but spreads out 
towards the nearest loudspeakers.  

Now we have found a particularly relevant criterion, 
that is: focussing amplitude peak on the virtual source 
location for all possible frequencies. On Figure 13, the 
second pair of subplots from the top might be 
considered as optimal in the sense of this criterion.  

 

 

Figure 13 Top view of 2D sound field approximations 
(truncated Fourier-Bessel series (11): left) and 

reconstructions (by a 32-loudspeaker array: right), for a 
source simulated at 75cm from the center (bottom 
views). Orders M=7, 8, 9, 12 from top to bottom. 
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3.3.3. Refining high-pass filters specifications 

Our "focalization" criterion is fulfilled by truncating 
ambisonics representation order according to the 
following principle: at each frequency flim

(M) such that 
Mth order truncated series reaches its maximum on the 
source location, preserve all spatial components of order 
m≤M and attenuate (or cancel) higher order ones 
(m≥M+1). This can be reinterpreted as follows: on each 
component of order m, apply a high-pass filter H(m) 2 
which pass-band low frequency limit is flim

(m) and which 
rejection frequency is flim

(m-1). An essential requirement 
is that high-pass filters have a null phase response in 
their respective pass-band. Figure 14 shows how 
amplitude spectra of such filters may look like. 
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Figure 14 Spectra of high-pass filters H(m) designed to 
limit functions Fm(kρ) for orders m=1 to 15 (from left to 

right) and a source distance ρ=1m. For each curve (of 
H(m)), pass-band frequency limit is marked by a vertical 

bar (with the same color as the curve). The same bar 
marks rejection frequency of higher order filter H(m+1). 

Before going farther, let's further define frequencies 
flim

(M). Actually, the fact flim
(M) is also such that function 

Jm=M-1(2πflim
(M)r/c) is maximal for r=ρ, is fairly 

fortuitous and is not so exact for arbitrary orders M. 
Therefore, defining frequency limits flim

(M) requires a bit 
trickier computational work. Some approximated results 
are reported in Table 1. An interesting property remains 
that flim

(M) values are inversely proportional to source 
distance ρ and derive from generic values krlim

(m) as 
listed in Table 1, according to formula: 

( ) ( ) ( ) ( )
lim lim lim lim2 / . /(2 )m m m mf c kr f kr cπ ρ πρ= ⇒ =  (13) 

 
                                                           
2 Do not mix up with NFC filters Hm

NFC!!! 

M (or m) 1 2 3 4 5 
kr (pM

(2D) max) 1.405 2.355 3.417 4.429 5.393
kr (pM

(3D) max) 1.699 2.836 3.919 4.981 6.031
M (or m) 6 7 8 9 10 

kr (pM
(2D) max) 6.404 7.409 8.357 9.347 10.345

kr (pM
(3D) max) 7.074 8.110 9.132 10.147 11.171

Table 1 kr-values related to frequencies where Mth order 
sound field approximation has their maximum at the 

place of the source (r=ρ). 

Higher orders values can be derived by affine 
extrapolation of values of Table 1. That's why we shown 
frequency limits as an affine function of order m in 
Figure 10.  

What's interesting now is to derive the "maximal useful 
amplification" of Near Field Functions Fm(kρ), i.e. their 
values at respective frequencies flim

(m). Figure 15 shows 
that it is much moderated: it goes from about 2 dB 
(m=1) then slowly rises up to about 5dB for m=14 or 15. 
Moreover, it doesn't depend on source distance ρ 
anymore, since the latter causes the same frequency 
scale distortion on both Fm(kρ) and flim

(m). 
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Figure 15 Amplitude and phase of Near Field Functions 
Fm(kρ) with ρ=1m and for orders m=1 to 15 (from left 

to right). Vertical bars mark frequency limits flim
(m). 

For each order m, high-pass filter H(m) has to preserve 
both amplitude and phase of Fm(kρ) in the pass-band 
above flim

(m); it has to ensure that rejection at lower 
frequency flim

(m-1) is sufficient to compensate for the rise 
of Fm(kρ) in-between and furthermore to lower it to a 
negligible level; and finally its slope in the remaining 
low frequency band must be sufficient regarding the 
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slope of Fm(kρ). Filters that fulfill such requirements are 
at least of order 2m when implemented as IIR filters. It's 
worth highlighting that a simplification occurs in filter 
combination H(m)(z).Fm(z), since all poles of Fm(z) are 
zeros of H(m)(z). Figure 16 shows spectra of such 
combined filters. 

0 200 400 600 800 1000
-15

-10

-5

0

5

10

15

Frequency (Hz)

A
m

pl
itu

de
 (d

B
)

 

Figure 16 Spectra of high-passed Near Field functions 
H(m)( ω).Fm(ω) for orders m=1 to 15 (from left to right) 

and a source distance ρ=1m. Original Near Field 
functions Fm(ω) are shown in dotted line for 

comparison. Diamonds show for each order m the 
highest "useful" amplification (at frequency flim

(m)). 

Note that no loudspeaker near field compensation 
(NFC) is involved at this stage, but NFC actually has to 
be performed, either at the encoding or decoding stage, 
in order to synthesize the wave front with its expected 
curvature. It lets possible to directly replace distance 
coding filters by H(m).Hm

NFC(ρ/c,R/c) in encoding formula 
(8), or to apply encoding formula (5) with H(m).Fm

(ρ/c) 
then apply NFC 1/Fm

(R/c) (6) in a later stage, e.g. the 
decoding stage. Anyway, final amplification will be 
lower than shown by Figure 16, especially if the virtual 
source is beyond the loudspeaker array. 

3.4. Distributing bass rendering effort 
amongst loudspeakers 

High-pass filters such as described in previous sections 
can find another advantageous use for processing an 
already composed sound field (even without distance 
coding) just before decoding and rendering it over a 
loudspeaker array. Indeed, since they restrict the spatial 
resolution at low frequencies, their effect is to distribute 
low frequency effort over a larger number of 
loudspeakers. This can be appreciated when 
loudspeakers are small and have a poor efficiency for 
low frequencies. 

4. CONCLUSION 

A previous study showed the ability of Higher Order 
Ambisonics to encode arbitrary sound fields, especially 
including near field effects, as long as a near field 
compensation (NFC-HOA) is introduced. NFC-HOA so 
limits the bass-boost due to near field sources or present 
in microphone array processing, but it cannot prevent 
from excessive bass-boost/levels when dealing with 
small source distance or microphone radius. The present 
paper introduced a variant and still efficient way of 
spatial coding that is totally safe with respect to signal 
processing and also electro-acoustic criteria.  

For this purpose, it has been proposed to discard the low 
frequency part of spatial (ambisonic) components, 
where problematic bass-boost incidentally arises, as 
long this part is shown to provide few improvement of 
sound field reconstruction over a given targeted area. So 
the main idea of our variant coding strategy is to apply 
high-pass filters on HOA components, which also 
performs a frequency dependent truncation of the spatial 
resolution (or order) of the sound field representation. 
Frequency limits appear to roughly obey an affine law 
of the components order m, while being inversely 
proportional to the target area radius. Special results 
concern distance coding of virtual sources, especially 
when these are simulated in the reproduction area and 
even in the listening area. An additional criterion has 
been introduced, that is focussing synthetic energy field 
on the source point, which helps refining high-pass 
filters specifications and ensures a good compromise 
between accuracy of wave front reconstruction over the 
area below the source distance and sensible amplitude 
field properties beyond. 

The design of such high-pass filters and their 
combination with near field modeling filters is being 
optimized. For now, their computational cost is higher 
than NFC filters described in [7]. Therefore, the latter 
encoding scheme still might be preferred for virtual 
sources that are known to be outside the loudspeaker 
array. Note that Near Field Compensation is still 
required for the correct rendering of wave front 
curvature. Now, it is not indispensable to introduce it at 
the encoding stage since high-pass filters themselves 
solve any bass-boost problem.  

Listening tests are planned for subjective evaluation of 
spatial rendering using circular arrays with 48 
loudspeakers and more.   
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