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Deonvolution of single- and multichannel systems is often an ill -conditioned problem whose
solution boasts certain frequency bands excessvely. A z-domain analysis demonstrates that the
degreeof ill -conditioning can be assessd by cdculating the poles of an ided solution, and it
also shows that frequency-dependent regularisation works by pushing those poles away from

the unit circle.
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l. INTRODUCTION

Demnvdutionin its most basic form can be described as the task of cdculating the inpu to a
discrete-time system from its output. It is usually assumed that the system is linea and that its
inpu-output mapping is known with good acarragy. In aomustics and audio, single-channel
deanvdution is particularly useful since it can compensate for the resporse of imperfed
transduces auch as healphores, loudspeskers, and amplifiers [1]. Multi-channel
demnvdutionis necessary in the design of crosstalk cancdlation systems and virtual source

imaging systempg?], [3].

Regularisation is a method that is commonly used when ore is faced with an ill -condtioned
problem [4, Sedion 18.4. The basic ideais to prevent the solution from having some
undesirable feaure by adding a “smocthness’ term to the @st function that we wish to
minimise. A suitable choice of the smocothness term can improve the cndtioning of the
problem substantially but it will inevitably be & the expense of the performance d the

troublesome frequencies.

In the following, we show that the dfed of frequency-dependent regularisation can be
conveniently explained by a pole-zero analysis of a matrix of ided filters, and that the same
poe-zero analysis can be used to indicae the degree of ill-condtioning of multi-channel
demnvdution poblems. The fast deconvdution method [2], [3] is based on the principles
outlined below. This method essentially provides a quick way to solve, in the least squares
sense, a linea equation system whase oefficients, right hand side, and unknavns are z-

transforms of stable digital filters.
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II. SYSTEM DESCRIPTION

The discrete-time multichannel decnvdution problem is diown in block diagram form in
Fig. 1. We will use ztransforms to dencte discrete time filters and signals, and sometimes
these ztransforms will be referred to as poynomias even though strictly spe&king their
powers are negative. We define the foll owing column vedors: u(z) is avedor of T observed
signals, v(z) isavedor of Ssourceinpu signals, w(z) isavedor of Rreproduced signals, d(2)
is a vedor of R desired signas, and e(2) is a vedor of R performance eror signas. The
matrices A(2), C(2), and H(2) represent multi-channel filters. A(z) is an RxT target matrix,
C(2) is an RxS plant matrix, and H(2) is an SXT matrix of filters whose wefficients we can
choose. We asaume that the dements of A(2), C(2), and H(2) are finite impulse resporse
(FIR) filters. Note that the vedors read aphabeticdly u, v, w along the lower half of the
block diagram, and that their dimensionsread T, S R (R, S T, in reverse); this will make the
notation easier to remember. The comporent z™ implements a so-cadled modeling delay by

shifting all the elements af(z) by an integer number of sampleg5, Example 7.2.2].

In the single-channel case, R, S, and T, are one, and consequently A(2), C(2), and H(2) are dl
scdar functions. Perfed equalization o a loudspedker impulse resporse, for example,
requires that A(z) has flat magnitude response. For multichannel “equali zation”, A(z) must be
an identity matrix. A perfed crosstak cancdlation retwork, for example, requires that A(2)

IS an identity matrix of order twi3].

lll. EXACT LEAST SQUARES DECONVOLUTION

Consider a cost function of the type
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J=E+BV (1)

where E is a measure of the performance eror e and V is a measure of the dfort v. The
positive red number  is a regularization parameter that determines how much weight to
assgn to the dfort term. As B is increased from zero to infinity, the solution changes

gradually from minimizinds only to minimizingV only.

It is convenient to consider the regularization to be the product of two comporents: a gain
fador and a shape fador. The gain fador is the conventional regularization parameter 3, and
the shape fador B(2) is the z-transform of a digital filter that passes through the frequencies
that we do nd want to seeboasted by H(z). Frequencies that are suppressed by B(2) are not
affeded by the regularization. Althouwgh it is the frequency resporse, and nd the time
resporse, of B(2) that isimportant, we prefer to design B(2) in the time domain. This prevents
its frequency resporse from changing very abruptly, and it also makes it straightforward to
include the z-transform of the filter'simpulse resporse in the analysis. The phase response of

B(2) is irrelevant since it does not affect the value of the e¥fovhich is an energy quantity.

The derivation d H(2) in the general multi-channel case is diredly analogous to that
presented in [2]. For the purpose of defining H(2) uniquely, the complex variable z is
constrained to be on the unit circle so that the contour |z = 1 isin the region d convergence
This means that the filters contained in H(z) are constrained to be stable, bu not constrained
to be ather causal or of finite duration. Consequently, they are generally not redisable, and
we therefore refer to these filters asideal. Nevertheless a sufficiently large modeling delay m
will ensure that only an insignificant part of the noncausal resporse caana be implemented

by a realisable digital filter matrix. The ideal filter matkiXz) is given by
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H(2) =[CT(zY)C(2) +B B(ZY)B(D)I] C'(zHA(@D) 2™ )

where the superscript T denates the transpaose operator and | is an identity-matrix of order S.

In the single-channel case, this result simplifies to

_ C(zHA®D
- C(z")C(2)+B B(z")B(2)

H(2) z" ®3)

This geda case is very important, na only becaise it is often encourtered in pradice bu

also because it suggests a way to analyze the more complex multichannel result.

IV. POLE-ZERO ANALYSIS

It is een from Eqg. 3that in the single-channel case H(2) can be naturally expressed in rational
form, just like the ztransform of a @nventional infinite impulse resporse (lIR) filter.
Consequently, we can lean abou the properties of thisfilter by looking at its poles and zeros
in the cmplex plane. The positions of the pales with resped to the unit circle ae particularly
important. Poles nea the unit circle make the time resporse of the filter decay away very
slowly. The time mnstant a, in samples, associated with a single pae dose to the unit circle

is approximately proportional to the reciprocal of the distarmtween the two, so

T=— (4)

when r<<1[6]. If the pdeisjust inside the unit circle, the filter’ s time resporse will be right-
sided and decay away in forward time, whereas if the pde is just outside the unit circle, its

response will be left-sided and decay away in backward[@p@hapter 2].
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A. General results; the single-channel case

We start by observing that if Eq. 3 is written in the form of a fraction,

_P@
HE@ =50 )

then the zeros dfl(2) are the zeros of the numerator polynorfi@),
P(2=C(zYA@@)z" (6)
and the poles dfi(z) are the zeros of the denominator polynorQig),
Q(2) =C(z")C(2) +B B(z")B(2). (7

Note thatQ(z) has the form of an auto-correlation function since it is symmetdaimz™.

B. Two single-channel examples

In order to illustrate how the regularisation modifies the pae-zero structure of H(z), we

consider the simple system
C(2=1-7" (8)

C(2) has asingle zero onthe unit circle & z= 1, and so its magnitude resporse is zero at DC.
If we set A(2) =1 (flat target resporse with zero phese), m=0 (no modeling delay), and
B(2) = 1 (frequency-independent regularisation), then from Eq. 3 we find

1-7+

(1-2(1-2")+B ®)

H(2) =
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H(2) has a single zero at= 1, and two poles, also on the raals, at

z:li—VBZZ“‘B 2 (10)

Whenp<<1, the power series expansion of this expression is given by
z=1x /g +0(p) (11)

which shows that for small values of B, the distance from the two pdes of H(2) to the unit
circleis propartional to the square roct of . For example, if § = 0.0001 then the two pdes of
H(2) are on the red axis at 1.01 and 0.99.According to Eq. 4, this corresponds to a time
constant a. of approximately 100 samples snce bath pdes are adistance of approximately

0.01 away from the unit circle.

It is e that the zero of H(2) is at the paosition d the singularity, z= 1. This ill ustrates the
general principle of regularisation: if the system is very ill-condtioned at a particular
frequency, H(2) wort attempt to deconvdve the system at this frequency becaise the dfort
penaty far outweighs the performance eror. We now consider how frequency-dependent

regularization modifies the pole-zero structure of a slightly more complex system.

Fig. 2 shows the properties of the sequence c(n) = {1,0,0,0,0.96}. This filter has been
constructed from its four zeros at 0.99, £0.99, and -0.99. Note that the zeros are evenly
spacal aroundthe unit circle & a distance of 0.01away from it. Fig. 2a shows the moduii of
the zeros of C(2) plotted against their arguments in radians (note the scding of the y-axis),

and Fig. 2b shows the magnitude respo@ef|C(2).

Fig. 3 shows the pae-zero map o the filter H(2) cdculated from Eq. 3when 3 = 0.003and

7
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A(2) = 1.In Fig. 3a, the shape fador is constant as a function d frequency which means that
B(2) = 1. In Fig. 3b,the shape fador is afirst order high-passFIR filter, B(z) = 1-z* (see Eq.
8), whose single zero is on the unit circle & 1. The drcles are the zeros, given by the zeros of
P(2) (seeEq. 6), andthe aosses are the pales, given by the zeros of Q(2) (seeEq. 7). If p was
zero, such a plot would show half the poes being cancdled ou exadly by zeros. The
paositions of the surviving poles would correspond exadly to the zeros of P(2) (seeFig. 2a).
When (3 isincreased, however, the poles move avay from the unit circle in the regions where
B(2) contains energy. In Fig. 33, B(2) is an all-passfilter, and so al the poes have moved. In
Fig. 3b, B(2) is a high-passfilter, and so the pdes bend away from the unit circle & high
frequencies (at arguments nea +r) whereas the pole just outside the unit circle & zero radians
is cancdled by a zero of P(2) becaise the regularisation daes not have ay effed at low

frequencies.

Fig. 4 shows the magnitude resporse |H| of H(z) cdculated with frequency-dependent
regularisation (solid line) and with noregularisation (dashed line). Thus, the solid line in Fig.
4a oorresponds to the frequency resporse of the signal whose pole-zero map is plotted in Fig.
3awhereas the solid linein Fig. 4bcorresponds to the frequency resporse of the signal whose
poe-zero map is hown in Fig. 3b.It is e that the frequency-dependent regularization hes

succeeded in attenuating high frequencies without affecting low frequencies.

C. General results; the multichannel case

Just as in the single-channel case, we start by writi ng the z-transform of the ided filter matrix

H(2) (see Eg. 2) in a form which is equivalent to a fraction,
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H(2)=Q ' (9P(2). (12)
Here, the numeratd?(2) is anSxT matrix of ztransforms given by
P(2=C"(zYA(2) z™, (14)
and the denominat@(z) is a squar&xS matrix ofz-transforms given by
Q(2)=C"(z")C(2) +B B(z")B(2)! . (13)

We ca invert Q(2) formally by dividing its adjoint adj[Q(2)], which is a matrix whose

dimensions are the same as thos®@, by its determinar®(z) [8, Section 0.8.2],

H(z =00, (15)

Q(2)

It is e that the determinant of Q(2) is a mmmon denominator of all the dements of H(2).
Thisimplies that the dements of H(z) share a ommon set of pales given by the zeros of the
poynomia Q(z), and in addition that those paes are not related in a simple way to the zeros

of the elements dD(z). Consider, for example, the two-by-two system

01 052'0

CO=sr 1 B (16)

If B is zero andh\(2) is an identity-matrix of order 2, then

0 125 05(z+z1)0O

05(z+zY) 125 ¢ (7)

Q(29) =

The two off-diagonal elements of Q(2) ead have two zeros on the imaginary axis at +i and -i
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whereas the diagonal elements do nd have any finite zeros at al. Nevertheless Q(2) has two
zeros on the red axis at £0.5 and ancther two at +2, and nore of these wincides with the
zeros of any of theindividual elements of Q(2), or C(2). Unfortunately, this means that even if
the individual elements of C(z) are well-condtioned there is no guarantee that Q(z) will be
well-condtioned. Crosstak cancdlation systems, for example, are generaly ill -condti oned
at low frequencies because the transfer functions contained in C(z) are very similar when the
aoustic wavelength is long, and so ore ends up esentially having to invert a 2-by-2 matrix

that contains all ond8].

D. The roots of the denominator Q(2)

It is no trivial matter to find the roots of a paynomia of high order, and there is an
overwhelming amourt of literature avail able on the subjed (see[9] for avery comprehensive
bibliography). As arule of thumb, a paynomial whaose degreeis lessthan 500can esasily be
fadored onafast PC. There ae few general results that are useful to us but the foll owing
three rules give some idea dou what to exped in pradice The rules concern symmetry,

clustering, and attractors.

First, the roots of Q(z) aways appea in groups of two o four. Since Q(2) is equal to Q(z?) it
follows that if z, is a zero of Q(2) then so is 1/z,. Furthermore, zeros off the red axis must
appea in complex conjugate pairs snce the oefficients of Q(z) are red. Note that the
symmetry in z and Z* means that for eat zero inside the unit circle, there is a @rrespondng
zero ouside, and this effedively spails our chances of implementing H(2) as a stable caisal

filter matrix (apart from in a few special cases).

Seoondy, theroaots of apoynomial of high order are not scatered all over the complex plane,

10
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but rather “...the roats of a randam paynomia tend to be evenly distributed in angle and
tightly clustered nea the unit circle a the degree of the paynomia increases’ (quae from
[10]). Since most signals we mme acossin pradice such as measured impulse resporses,
have a cetain degree of randamness built into them, this asymptotic result acairately

describes what is most often observed with experimental data.

Thirdly, the roats of B(z%)B(z) adt as a kind d attradtor set for the roats of Q(z) for large
values of (. It is easily verified that when (3 is very small, the roats of Q(z) are those of the
determinant of C(Z')C(2) whereas when B is very large, the roats of Q(2) are those of
B(zY)B(2). Consequently, for some chaices of B(2) it is posshle that excessve use of
regularisation can cause some of the paesto be pulled bad towards the unit circle. Note that
when frequency-independent regularisation is used, B(2) is a anstant and consequently it has
no roats. The implication d this is that for large f the dtradors are zero (the origin) and
complex infinity (points very far away from the origin), and so in this case the regularisation

will push all the poles away from the unit circle.

V. CONCLUSIONS

The degree of ill-condtioning of a single- or multichannel deconvdution problem can be
asesed by mapping out the zeros of the determinant of a matrix of z-transforms. Those zeros
becme the pales of a matrix of ided filters, and any pales close to the unit circle will result
in sharp pe&ks in the magnitude resporses of the ided filters. The sharpnessof thase peeks
can be reduced seledively by using frequency-dependent regularisation which works by
pushing some of the poles away from the unit circle. However, any regularisation modifies

the pale-zero structure of the ided filters in such a way that strictly spe&ing they canna be

11
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both causal and stable, and so a modeling delay must be used in the design of a redisable

filter matrix.

It is graightforward to relax the constraints on the target matrix A(z), the shape fador B(2),
and the plant transfer functions C(z) so that they can have infinite impulse resporses. For
example, if B(2) iswritten Bgr(2)/Biir(2), fomal manipulations of the z-transforms gill alow a

pole-zero analysis dfi(2).
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FIGURE CAPTIONS

Fig. 1 The discrete-time deconvolution problem in block diagram form

Fig. 2 The properties of a sequence whose z-transform is C(2)=1-0.96&*. @) The zeros of
C(2) in the cmmplex plane, and b) its magnitude resporse |C|. Fig. 2aisa dose-up d

a thin strip that covers the unit circle

Fig. 3 The pasitions of the paes (crosses) and zeros (circles) in the cmplex plane of the
ided inverse H(2) of C(z) whase properties are shown in Fig. 2. H(2) is cdculated
with @ frequency-independent regularisation, and b frequency-dependent

regularisation

Fig. 4 The magnitude resporse |H| correspondng to the pole-zero maps plotted in Fig. 3.
H(2) is cdculated with a) frequency-independent regularisation, and b) frequency-

dependent regularisation. The dashed lines sHpwa]culated with no regularisation

14
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