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Binaural material must be passed through a cross-talk cancellation network before
it can be played back over two loudspeakers. Such a network works well only if it
is capable of providing a significant boost of low frequencies. The fast
deconvolution method using frequency-dependent regularisation is suitable for
designing a matrix of long finite impulse response filters that have the necessary
dynamic range.
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0 Introduction
Binaural material, such as a dummy-head recording, is generally intended for playback over
headphones [1]. In order to achieve the equivalent effect when such material is played back over
two loudspeakers, a cross-talk cancellation network must be used to compensate for the cross-talk
(the sound that is reproduced at the right ear by the left loudspeaker, and vice versa) and the head-
related transfer functions (HRTFs) associated with a real li stener [2]-[8]. In practice, a cross-talk
cancellation network can be implemented by a two-by-two matrix of digital filters. Unfortunately,
though, eff icient cross-talk cancellation at low frequencies is possible only if each element of the
cross-talk cancellation network is capable of providing a significant boost of those frequencies
[8]. This is because the difference between the direct path HRTF and the cross-talk path HRTF is
very small at low frequencies, and so one ends up having to invert an almost singular two-by-two
matrix. This problem, which is usually referred to as ill -conditioning, at low frequencies is
particularly severe when the two loudspeakers are positioned close together, as is the case for the
stereo dipole where the loudspeakers span only ten degrees as seen by the listener [9].

In practice, it is advantageous to use frequency-dependent regularisation to attenuate peaks
selectively. Even though a strong boost of low frequencies is necessary for eff icient cross-talk
cancellation, a strong boost of high frequencies is generally undesirable. It is particularly
important to be aware of this problem when working with HRTFs that are measured digitally. The
analogue anti-aliasing filters in the data acquisition equipment cause the spectrum of the
measured transfer functions to contain only very littl e energy at high frequencies, and if one
attempts to invert such a transfer function, the solution will i nevitably boost frequencies just
below the Nyquist frequency [10].

The fast deconvolution method [11], [12], which is based on the Fast Fourier Transform, can be
used to design a matrix of causal finite impulse response filters whose performance is optimized
at a large number of discrete frequencies. The method is very eff icient for both single-channel
deconvolution, which can be used for loudspeaker equalisation, and multi -channel deconvolution,
which can be used to design cross-talk cancellation networks. Fast deconvolution essentially
provides a quick way to solve, in the least squares sense, a linear equation system whose
coeff icients, right hand side, and unknowns are z-transforms of stable digital filters. Frequency-
dependent regularisation is used to prevent sharp peaks in the magnitude response of the optimal
filters. A modeling delay [13, Example 7.2.2] is used to ensure that the cross-talk cancellation
network performs well not only in terms of amplitude, but also in terms of phase. The algorithm
assumes that it is feasible to use long optimal filters, and it works well only when two
regularisation parameters, a shape factor and a gain factor, are set appropriately. In practice, the
values of the two regularisation parameters are most easily determined by trial-and-error
experiments.

1 Cross-talk cancellation networks

1.1 Principles and solution

The geometry of the problem is shown in Fig. 1. Two loudspeakers are positioned symmetrically
in front of a single listener. The loudspeakers span an angle of 

�
 as seen from the position of the

listener. When the system is operating at a single frequency, we can use complex notation to
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describe the variables. Thus, U1 and U2 are two binaural signals, recorded or synthesized, V1 and
V2 are the inputs to the two loudspeakers, and W1 and W2 are the sound pressures generated at the
listener’s ears (note that the variables read alphabetically U, V, W, this will make the notation
easier to remember). There are four transfer paths from the loudspeakers to the listener’s ears, but
only two of them are different: the direct path C1 and the cross-talk path C2. Similarly, only two
of the four elements of the cross-talk cancellation network are different: the diagonal element H1,
and the off-diagonal element H2.

From inspection of Fig. 1 it is easily verified that

C v w⋅ = (1a)
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and

H u v⋅ = (2a)
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An ideal cross-talk cancellation network reproduces U1 at the listener’s left ear (W1=U1)
regardless of the value of U2, and U2 at the listener’s right ear (W2=U2) regardless of the value of
U1. It is straightforward to show that this is achieved when the H-matrix in Eq. 2a is the inverse
of the C-matrix in Eq. 1a. Consequently
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1.2 Ill-conditioning

It is seen from Eq. 3 that when the difference between C1 and C2 is small , H1 and H2 become very
large and almost exactly out of phase. This is a problem particularly at very low frequencies since
the direct path C1 and the cross-talk path C2 are almost equal, regardless of the loudspeaker span�
, when the wavelength is very long. At 0Hz, the phase of C1 and C2 is the same, and it is only

because the spherical attenuation associated with the cross-talk path C2 is greater than the
spherical attenuation associated with the direct path C1 that the matrix C is not exactly singular.
Consequently, the closer the two sources are to the listener, the easier it is to implement the cross-
talk cancellation network. A distance in the range between 0.5m and 1m is a good choice, even if
the listener sits further away. Near-field effects start to play a role when the distance to the source
becomes less than 0.5m [14]. In practice, it is not important that the design- and the implemention
distance are the same, it is more important that the design- and implementation loudspeaker span
are the same.
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It is fortunate that when two binaural signals U1 and U2 are passed through a cross-talk
cancellation network, the dynamic range of the outputs V1 and V2 of the network is generally
significantly smaller than the dynamic range of H1 and H2 [9], [15].

When one is dealing with measured HRTFs, the ill -conditioning at low frequencies is made even
worse by the poor radiation eff iciency of the loudspeaker. Consequently, a cross-talk cancellation
network that also has to compensate for the sound reproduction chain must be implemented with
care in order to avoid overloading the loudspeakers and ampli fiers, as well as saturating the
digital signal processing equipment.

2 FIR filter design using fast deconvolution
The idea central to our filter design algorithm [11], [12], is to minimise, in the frequency domain,
a quadratic cost function of the type

J E V= + β (4)

where E is a measure of the performance error e and V is a measure of the effort v. The positive
real number �  is a regularization parameter that determines how much weight to assign to the
effort term. As �  is increased from zero to infinity, the solution changes gradually from
minimizing E only to minimizing V only. By making the regularization frequency-dependent, we
can control the time response of the optimal filters in quite a profound way. However, instead of
specifying �  as a function of frequency it is advantegous to build the frequency-dependence into
V.

2.1 Frequency-dependent regularisation

It is convenient to consider the regularization to be the product of two components: a gain factor
�  and a shape factor B(z) [10], [12]. The gain factor �  is a small positive number, and the shape
factor B(z) is the z-transform of a digital filter that ampli fies the frequencies that we do not want
to see boosted by the cross-talk cancellation network. Frequencies that are suppressed by B(z) are
not affected by the regularization. Although it is the frequency response, and not the time
response, of B(z) that is important, we prefer to design B(z) in the time domain. The phase
response of B(z) is irrelevant since H(z) is determined by minimizing an energy quantity.

2.2 Ideal optimal filters

It is possible to derive an analytical expression for a matrix H(z) of ideal optimal filters [11], [12].
We find

[ ]H C C I C( ) ( ) ( ) ( ) ( ) ( )z z z B z B z z z m= +− − − − −T T1 1 1 1β (5)

The component z–m implements a modeling delay of m samples. It is seen that when �  is zero, or
B(z) is zero, then H(z) is C(z)-1z-m, as expected.

2.3 The fast deconvolution algorithm

The fast deconvolution method works by sampling Eq. 5, which gives H(z) as a continuous
function of frequency, at Nh points. Since the method uses Fast Fourier Transforms (FFTs), Nh

must be a power of two. The implementation of the method is straightforward in practice. FFTs
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are used to get in and out of the frequency domain, and the system is inverted for each frequency
in turn. Since using the FFT effectively means that we are operating with periodic sequences, a
cyclic shift of the inverse FFTs of the optimal frequency responses is used to implement a
modeling delay.

If an FFT is used to sample the frequency response of H(z) at Nh points without including the
phase contribution from the modeling delay, then the value of H(k) at those frequencies is given
by

[ ]H C C I C( ) ( ) ( ) ( ) ( ) ( )k k k B k B k k= + ∗ −H Hβ
1

(6)

where k denotes the k’ th frequency line; that is, the frequency corresponding to the complex
number exp(i2k/Nh). The superscript H denotes the Hermitian operator that transposes and
conjugates its argument, the superscript * denotes complex conjugation of its scalar argument. In
order to calculate the impulse responses of a matrix of causal filters the following steps are
necessary.

1.  Calculate B(k) and C(k) by taking Nh-point FFTs of each of their elements

2.  For each of the Nh values of k, calculate H(k) from Eq. 6

3.  Calculate one period of h(n) by taking Nh-point inverse FFTs of the elements of H(k)

4.  Implement the modeling delay by a cyclic shift of m samples of each element of h(n)

The exact value of m is not critical; a value of Nh/2 is likely to work well in all but a few cases.

2.4 Determining the regularization gain- and shape factors

Since the purpose of the regularization is to impose a subjective constraint on the solution, it is
very diff icult to come up with a reliable black box routine that can set the gain factor �  and the
shape factor B(z) simultaneously. For audio-related problems, though, the generic function shown
in Fig. 2 often works very well . As a function of frequency, the magnitude |B| of B(z) has a low-
frequency asymptotic value BL, and a high-frequency asymptotic value BH (subscript H is for
“high” , and should not be confused with the optimal filters H1 and H2). In the mid-frequency
region, |B| is one. BL and BH are usually much greater than one. The frequencies fL1, fL2, fH1, and
fH2 define the two transition bands. When the sampling frequency is high, for example 44.1kHz, it
is sometimes advantageous to design |B| on a double-logarithmic scale since this is a good
approximation to the way the ear perceives sound. Once B(z) is known, there are plenty of
methods one can use to determine �  automatically. Since the main undesirable feature of the
solution is li kely to be sharp peaks in the magnitude response, one can try to adjust �  such that a
certain maximum value is not exceeded, or such that the peak-to-rms ratio is well -behaved within
certain frequency bands. It is up to the user to specify a criterion that is appropriate for the
application at hand.

3 Two cross-talk cancellation networks for the stereo dipole
When the two loudspeakers span only ten degrees as seen by the listener, we refer to the
loudspeaker arrangement as a stereo dipole [9]. We will now use the fast deconvolution method
to design two different cross-talk cancellation networks for this loudspeaker arrangement. The
sampling frequency is 44.1kHz in both cases. The first network is based on a pair of HRTFs
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calculated from an analytical rigid sphere model [14], [16]. The sphere model can be used to
generate results in the frequency domain. These results are then windowed so that a pair of digital
time responses can be calculated. The second network is based on a pair of HRTFs measured on
KEMAR dummy-head [17]. These HRTFs contain littl e energy at the extreme ends of the
frequency range, and they are therefore more difficult to deal with than the modeled HRTFs.

3.1 HRTFs derived from a rigid sphere model

The sphere is assumed to have a radius of 9cm, and the ears not quite at opposite positions, but
rather they are pushed back ten degrees so that they are at 100 degrees relative to straight front
[14]. This geometry ensures a good match to the true interaural time difference (although it has
been suggested that a radius of 7cm is better for near-frontal sources, see [18] for details).

Fig. 3 shows the impulse responses of a) C1(z), and b) C2(z) when the distance from the two
sources to the centre of the listener’s head is 1m. Since we do not have direct access to a time
domain expression for the scattered field, the simulated time responses are calculated by an
inverse Fourier transform of the sampled frequency response (see [16] for details). The frequency
responses have been windowed in order to ensure that the time responses are of relatively short
duration. The windowing in the frequency domain is equivalent to convolution with a so-called
digital Hanning pulse given by the time sequence {0, 0.5, 1, 0.5, 0}. Thus, C1(z) and C2(z) are
essentially low-pass filtered versions of the true transfer functions, and this must be compensated
for by also low-pass filtering the optimal filters H1(z) and H2(z) (this is equivalent to solving an
equation system whose left and right hand sides have been multiplied by the same number).
Formally, this is done by setting the diagonal elements of a so-called target matrix A(z) equal to
the Hanning pulse (see [11] for details). Note that C1(z) and C2(z) are quite similar because the
two loudspeakers are very close together.

Fig. 4 shows a) the impulse response and b) the magnitude response of the shape factor B(z). This
filter is a “gradual” high-pass filter whose magnitude response increases from 0.01 to 1 as the
frequency increases from 0.6fNyq to 0.9fNyq.

Fig. 5 shows the magnitude responses of a) H1(z) and b) H2(z) calculated with frequency-
dependent regularisation (solid lines) and with no regularisation (dashed lines). The shape factor
B(z) is that shown in Fig. 4, and the gain factor �  is 0.05. It is seen that the regularisation has
taken out the peak just below the Nyquist frequency ( � 22kHz), and that the response at high
frequencies rolls of gently. Note that even though the magnitude responses of H1(z) and H2(z) are
very similar, their phase responses are completely different [15].

Fig. 6 shows the two different impulse responses, a) H1(z) and b) H2(z). Each impulse response
contains 1024 coeff icients, and they correspond to the magnitude responses shown with the solid
lines in Fig. 5. Note that both contain a component that decays away very slowly in forward time.
This component is responsible for the required boost of low frequencies.

3.2 HRTFs measured on KEMAR dummy-head

Fig. 7 is equivalent to Fig. 3. It shows the impulse responses of a) the direct path C1(z), and b) the
cross-talk path C2(z) when the two HRTFs are measured on a KEMAR dummy-head in an
anechoic chamber (this HRTF data is available on the internet [17]). Since the data is not
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equalised for the loudspeaker response, the two impulse responses do not contain much energy at
very high, or very low, frequencies.

Fig. 8 is equivalent to Fig. 4. It shows a) the impulse response and b) the magnitude response of
the shape factor B(z). This filter has the same type of “gradual” high-pass characteristic as the
filter shown in Fig. 4, but in addition it allows energy at frequencies between 0.3fNyq and 0.4fNyq

to pass through. This is done in order to attenuate a peak that would otherwise appear just below
0.4fNyq as shown in Fig. 9.

Fig. 9 is equivalent to Fig. 5. It shows the magnitude responses of a) H1(z) and b) H2(z) calculated
with frequency-dependent regularisation (solid lines) and with no regularisation (dashed lines).
The shape factor B(z) is that shown in Fig. 8, and the gain factor �  is 0.5. It is seen that the
regularisation has taken out the peak at approximately 0.35fNyq and also filtered out the
unacceptable boost of the frequencies just below fNyq. Note the considerable dynamic range of the
magnitude responses of H1(z) and H2(z). The value at DC is more than 50dB higher than the value
at 0.1fNyq. This happens because the filters now have to compensate for the loudspeaker as well as
the cross-talk.

Fig. 10 is equivalent to Fig. 6. It shows the two different impulse responses, a) H1(z) and b) H2(z).
Each impulse response contains 2048 coeff icients, and they correspond to the magnitude
responses shown with the solid lines in Fig. 9. Note that the low-frequency component now
decays away in backward time. Had a modeling delay not been used, this component would be
non-causal and therefore unrealisable. It is the non-minimum phase characteristics of the
loudspeaker at low frequencies that causes this dramatic difference between the results based on
an analytical sphere model and the results based on the measurements on a dummy-head.

4 Conclusions
Eff icient cross-talk cancellation over a wide frequency range is possible only when each element
of the cross-talk cancellation network is capable of a very powerful boost of low frequencies. If
the network also has to compensate for the response of the loudspeaker, the required boost is even
greater. In addition, the non-mimimum phase behaviour that is typical of electro-acoustic
transducers at the extreme ends of the frequency range makes it necessary to use a modeling delay
in order to be able to equalise the phase response as well as the magnitude response.

The fast deconvolution method is very suitable for designing long finite impulse response filters
that have a large dynamic range. Frequency-dependent regularisation provides a convenient way
to control the power output from the filters, and the regularisation can be used to optimize the
subjective performance of the system as well as prevent overloading of the ampli fiers and
loudspeakers.

Finally, it is important to keep in mind that even though it is computationally feasible to invert
very long impulse responses with the fast deconvolution method, an accurate deconvolution of an
impulse response that contains a lot of detail does not necessarily lead to good subjective results.
It is often better to invert only the system’s most essential characteristics. In practice, this usually
helps to avoid excessive colouration of the reproduced sound.
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Fig. 1. The variables and the parameters used to define a cross-talk cancellation network. Note
that because of the symmetry there are only two different electro-acoustic transfer
functions, C1 and C2, and the network contains only two different filters, H1 and H2
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Fig. 2. A suggested magnitude response function for the shape factor B(z). This type of frequency-
dependent regularisation ensures that the cross-talk cancellation network does not boost
very low, and very high, frequencies excessively
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Fig. 3. The impulse responses of a) the direct path C1 and b) the cross-talk path C2 as defined in
Fig. 1 when the listener’s head is modeled as a rigid sphere, and the sampling frequency is
44.1kHz
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Fig. 4. The properties of the shape factor B(z) used to design a cross-talk cancellation network
based on the impulse responses shown in Fig. 3. a) the impulse response of B(z), and b) its
magnitude response
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Fig. 5. The magnitude responses of a) H1(z) and b) H2(z) calculated with frequency-dependent
regularisation (solid lines) and with no regularisation (dashed lines). The shape factor B(z)
is that shown in Fig. 4. Note that the regularisation has taken out the peak just below the
Nyquist frequency
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Fig. 6. The impulse responses of the two filters a) H1(z) and b) H2(z) whose magnitude responses
are shown with the solid lines in Fig. 5. Each impulse response contains 1024 coefficients
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Fig. 7. The impulse responses of a) the direct path C1(z), and b) the cross-talk path C2(z) when the
two HRTFs are measured on a KEMAR dummy-head in an anechoic chamber at a
sampling frequency of 44.1kHz. The data is not equalised for the loudspeaker response
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Fig. 8. The properties of the shape factor B(z) used to design a cross-talk cancellation network
based on the impulse responses shown in Fig. 7. a) the impulse response of B(z), and b) its
magnitude response
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Fig. 9. The magnitude responses of a) H1(z) and b) H2(z) calculated with frequency-dependent
regularisation (solid lines) and with no regularisation (dashed lines). The shape factor B(z)
is that shown in Fig. 8. Note that the regularisation has taken out the peak at approximately
0.35fNyq and also filtered out the unacceptable boost of the frequencies just below fNyq
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Fig. 10. The two impulse responses, a) H1(z) and b) H2(z) whose magnitude responses are shown
with the solid lines in Fig. 9. Each impulse response contains 2048 coeff icients. Note that
the low-frequency component now decays away in backward time


