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STSF - a unique technique for scan-
based Near-field Acoustic Holography 
without restrictions on coherence 

by Jorgen Hald 

Abstract 
The Spatial Transformation of Sound Fields (STSF) technique involves a 
scanning over a (planar) surface close to the source under investigation. 
From cross spectra measured during the scan, a principal component rep­
resentation of the sound field is extracted. Any power descriptor of the 
near field (intensity, sound pressure, etc.) can then be investigated by 
means of Near-field Acoustic Holography (NAH), while the more distant 
field can be determined by application of Helmholtz' integral equation. 

The present paper outlines the theoretical foundation of the cross spec­
tral principal component technique implemented in STSF, and relates it 
to various other NAH techniques. It is demonstrated that compared to 
these techniques, the cross spectral formulation as implemented in STSF 
has the advantage that no restrictions are placed on the coherence and 
bandwidth of the sound field, without requiring simultaneous 
measurements. 

Sommaire 
La technique de transformation spatiale des champs sonores (Spatial 
Transformation of Sound Fields) est fondee sur le balayage d'une surface 
plane pres de la source etudiee. Une representation de la composante prin-
cipale est extraite de l'interspectre mesure pendant le balayage. Tout de-
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scripteur de puissance du champ proche (intensite acoustique, pression 
acoustique, etc.) peut alors etre etudie au moyen de Tholographie acousti-
que du champ proche (Near-field Acoustic Holography), alors que le 
champ plus distant peut etre determine en appliquant l'equation integrate 
de Helmholtz. 

Get article expose le fondement theorique de la technique de compo-
sante principale interspectrale employee en STSF, et la compare a 
d'autres techniques NAH. II est demontre que comparee a ces techniques, 
la formulation interspectrale telle qu'employee en STSF a l'avantage de 
ne placer aucune rectriction sur les coherence et largeur de bande du 
champ sonore, meme si les mesures ne sont pas simultanees. 

Zussammenfassung 
Die raumlichen Transformation von Schallfeldern (STSF) beinhaltet das 
Abtasten einer (planen) Oberflache nahe der zu untersuchenden Schall-
quelle. Aus den wahrend des Abtastens gemessenen Kreuzspektren lassen 
sich zur Beschreibung des Schallfelds grundlegende GroBen ableiten. Alle 
LeistungsgroBen des Nahfelds (Intensitat, Schalldruck usw.) konnen mit 
Hilfe der Nahfeld-Holographie (NAH) untersucht werden; wahrend das 
Fernfeld durch Anwendung der Helmholtz-Gleichung beschrieben wird. 

Die vorliegende Arbeit beschreibt die theoretischen Grundlagen der in 
der STSF enthaltenen Kreuzspektren-Komponentenmethode und verg-
leicht sie mit verschiedenen anderen NAH-Methoden. Es wird heraus-
gearbeitet, daB die Kreuzspektrenmethode im LJnterschied zu den an­
deren Methoden den Vorteil hat, daB keine Beschrankungen bestehen 
beziiglich der Koharenz und Bandbreite des Schallfelds und keine simul-
tane Messungen erforderlich sind. 

1. Introduction 

1.1. Principle of STSF 
The basic principle of the Spatial Transformation of Sound Fields (STSF) 
technique is illustrated in Fig. L Based on cross spectra measured over a 
planar surface close to the source under investigation, all parameters of 
the sound field can be mapped over a three dimensional region extending 
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Fig. h Principle of STSF 

from the surface of the source to infinity. The near field is predicted from 
the scan data using Near-field Acoustic Holography (NAH), while the 
more distant field is calculated using Helmholtz' Integral Equation (HIE). 

In addition to the 3D mapping capability based on 2D measurements, 
STSF also provides the possibility of doing Partial Source Attenuation 
Simulation (PSAS). This simulation is done by backwards propagating 
the cross spectral representation of the sound field from the measurement 
surface to (ideally) the source surface, then modifying the representation 
at the source surface according to an attenuation model and finally pre­
dicting the sound field from the modified representation. 

1.2. Development of STSF 
Methods for prediction of a wave field in regions of space based on mea­
surements in other regions have evolved over a long period. Most of the 
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techniques are based on Helmholtz' integral equation, which in principle 
requires, for the case of acoustic wave fields, the measurement of pressure 
and particle velocity over a surface enclosing the source. Some aspects of 
the recent development shall be outlined. 

Parrent [1] derived an alternative formulation of Helmholtz' integral 
equation to propagate mathematically the mutual coherence function 
from a source surface to sets of points further away from the source. Thus, 
a statistical description of the wave fields had been interconnected with 
the mathematical propagation models, allowing better modelling of the 
propagation of non-coherent fields. 

The theory developed by Parrent and other scientists in the field of op­
tics led to similar work within the field of acoustics. Ferris [2] showed how 
the far-field sound pressure could be predicted from the cross spectra 
measured over a surface enclosing the source in the near-field region. 

The work of Shewell and Wolf [3] on inverse diffraction of monochro­
matic (single frequency) coherent wave fields constitutes a basis for acous­
tic holography. Their plane to plane diffraction theory allows prediction 
of the field closer to the source than the measurement plane. Evanescent 
waves are, however, not reconstructed which is usually not serious in op­
tics but of great importance in acoustics, where the wavelength is often not 
small compared to the size of the source. 

This fundamental drawback of the inverse diffraction technique was re­
moved in the Near-field Acoustic Holography technique introduced by 
Williams, Maynard and Skudrzyk from Pennsylvania State University [4]. 
In NAH the evanescent waves are reconstructed to an extent which is lim­
ited basically by the dynamic range of the measured data. 

Since the first presentation of NAH, the technique has been improved, 
and the underlying theory has been explored and published in a number of 
papers, recently in a review paper by Maynard, Williams and Lee [5]. This 
paper also describes a couple of complete NAH systems built at Pennsyl­
vania State University. 

The STSF system developed at Brtiel & Kjaer, Denmark, applies NAH 
and HIE in connection with a cross spectral description of the sound field 
[ 6 - 11]. By doing so, the coherence and single frequency restrictions in 
conventional implementations of NAH and HIE are avoided, as will be 
demonstated in the present paper. The STSF system includes an efficient 
principal component measurement technique to achieve a cross spectral 
representation of the sound field. 
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2. Spatial transformation tools for complex time har­
monic sound fields 

Throughout this paper the word monochromatic will be used to describe a 
wave field which has only a single frequency component. Similarly, a co­
herent wave field is a field with perfect coherence between every pair of 
points. 

The mathematical models for the propagation of sound waves in a homo­
geneous source free medium are based on the homogeneous wave equation. 
For a single frequency component with angular frequency o> and wave 
number k = 00/c, c being the propagation velocity of sound in the medium, 
the wave equation takes the form [12] 

V2p(_r) + fe2p(j;) = 0 (1) 

Here V2 is the Laplace operator which can also be expressed as the diver­
gence of the gradient ( V2 = V • V ), p is the complex sound pressure with 
an assumed time dependence eJwt, and r describes the position in space. 

In connection with the wave equation (1) it is important to realize that it 
has been obtained by a Fourier transform of the corresponding temporal 
wave equation. The complex wave field p (r , co) in eq. (1) should therefore 
be seen as the Fourier transform of a single, infinite, time record of a field 
p(r, t). This fact must be borne in mind when measurements are taken in 
a wave field to be processed using the wave equation (1). Either the data 
must be taken simultaneously, or some kind of periodicity or repeatability 
of the time signal must be exploited. 

In any case, the time harmonic field represented by 
p (r, co) is monochromatic and perfectly coherent. A coherence less than 
one cannot be represented by a single time harmonic field. From the appli­
cation of dual channel FFT analyzers it is commonly known that a single 
set of Fourier transformed, simultaneous time records cannot represent a 
coherence less than one. As the wave equation (1) is based on a single Fou­
rier transformed time record, it cannot predict a coherence less than one. 
The prediction of statistical descriptors such as coherence requires several 
independent Fourier transformed time records. 

2.L Helmholtz' Integral Equation (HIE) 
The Helmholtz' integral equation can be derived on the basis of the homo­
geneous wave equation (1), see e.g. [12]. In its general form HIE expresses 

5 



the wave field p(r_) at a position r_ outside a closed surface S enclosing 
the source in terms of the wave field itself and its normal derivative on the 
surface S: 

r f f lp ( r - ) 3 G ( r , r ' ) l 
P ( I ) =js { - 5 f i 0 ( r . r - ) - P ( i l ) — 5 J - } ISM W 

In this equation d/dn means differentiation in the direction of the out­
wards unit normal to the surface S, r_' defines a position on S, dS(r') is 
a surface area element at r', and G is the free space Green's function, 

e-ML-L'\ 

Air | _r - r | 

The normal derivative of the sound pressure in eq. (2) can be replaced 
by the normal component un of the particle velocity through application of 
the equation of motion [13] 

dp 
—— = -j(x)pun (4) 

on 
where p is the density of the medium. Substitution of eq. (4) in eq. (2) now 
leads to the following general form of HIE 

P(L) = -Js <Jupun{L')G(L,L')+p{r_') — dS(L') (5) 

Fig. 2 illustrates the geometry referred to in eq. (5). 

Noting that the surface S can be any surface enclosing the source, we 
select as S a plane close to the source, closed by a hemisphere at infinity, 
ref. Fig. 2b. With this choice of S, the Sommerfeld radiation condition can 
be used to show that only the plane contributes to the integral in eq. (5), 
[12]. 

Further, instead of the free space Green's function G(£,£_'), we may 
select a Green's function Gp (r_,r_') that vanishes on the planar surface S, 
see e.g. [12]. Using this Green's function, the general form (5) of HIE sim­
plifies to 

C dGJr9r') 
p(r) = - p(r') "K-'-'dSir') (6) 

JS on v -
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Fig. 2. Geometry used in Holmholtz' Integral Equation (HIE) 
a) Complicated measurement surface S 
b) Planar measurement surface S 

which requires only the pressure field to be known on S. Reference [12] 
gives an expression for Gp (r_,r_') allowing eq. (6) to be rewritten in the 
following form 

p{L)=JjsP{rL)coso(i^)e-^ds(n (7) 

where X is wavelength, R_ = r_ - r_f is the vector from the integration 
point r_f on the surface S to the field point r_, R = \ R_\ is the length of 
this vector, and 6 is the angle from the outward surface normal ft (at 
r_f) to R_, that is: cos 6 = ft • R_/R. 

Instead of Gp(r_,r_') we might have selected a Green's function 
Gu(r_, r_') with vanishing normal derivative over the measurement sur­
face S. This would lead to a formulation requiring only the normal compo­
nent un of the particle velocity to be known over S. These two special for­
mulations of HIE are historically referred to as the first and second 
Rayleigh integrals respectively [5], 

For practical applications of e.g. Rayleigh's first integral (7), measure­
ments are taken only at a discrete set of points, r_'n, n = 1,2,..., N, over a 
finite measurement area, and the integral is approximated by a 
summation 
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N 
p(r)** J^PiL'n) H{L,L'n) (8) 

n = 1 

with 

^ ^ ) = ; c o s ^ ( l - ^ - ) ^ A S „ (9) 

where in general the subscript "n" refers to measurement point no. n at 
r_'n, and ASn is the surface area element at that point. 

Arranging the measured pressure data p ( r_f
n) in a column matrix p, 

P(r_'2) 
p - . (10) 

. P(£_'N). 

and similarly the transfer functions H(r_,r_'n) in another column matrix 
H(L), 

H(L,L\) 
H(L,L'2) 

H(r)= . (11) 

. H(L,L'N) 

allows the Rayleigh formula (8) to be written in the following condensed 
matrix form: 

p(L) ~HT(L)p = pTH(r_) (12) 

2.2. Near-field Acoustic Holography (NAH) 
A detailed description of the theory behind NAH has been given in the 
literature, [4-5], and reference [14] treats some important aspects of com­
puter implementations of the NAH algorithms. 

The treatment to be given here will be a high-level matrix oriented de­
scription based on the formulation of HIE in the foregoing section. In the 
context of the present paper, NAH is considered a tool that applies for 
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Fig. 3. Hologram plane S and calculation plane S with hologram matrix p and out­
put matrix p respectively 

plane to plane transformation of complex time harmonic sound fields, tak­
ing into account the evanescent wave components of the near field. 

More specifically the problem solved by NAH is the following. Having 
measured the complex (time harmonic) pressure p(r') over a plane S 
close to the source, the pressure p(]i) over a translated plane S is calcu­
lated. Since the measured pressure function p ( __') shall be denoted the 
hologram, the measurement plane S will be referred to as the hologram 
plane. The calculation plane S can be either further away from or closer to 
the source than the hologram plane, see Fig. 3, the only requirement being 
that the region between S and S is source free. 

As in the previous section we define a grid of measurement points 
r_f

n in the hologram plane, and arrange the complex pressures 
Pn = p(l_n) measured at these points in a column matrix p . This matrix 
which shall be denoted the hologram matrix was defined in eq. (10). 

Instead of the single output point _ defined in connection with HIE, 
we now define a complete grid of output points rm, m = 1, 2, ... M, on 
the calculation plane S. We will assume that the hologram and output 
grids are equal, and thus M = N. 

To be able to use the HIE formula (12) for calculation of the pressure 
Pm — P ( _m) a t _ m , we assume first that S is further away from the source 
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than S. Defining the column matrix Hm of Green's function values to the 
point r_m as 

Hm = H(Lm) (13) 

where H(r_m) is defined in eq. (11), then according to eq. (12) pm is given 
. by 

pm = Hjp = pTHm (14) 

Here, the superscript " T" specifies a transposition of a matrix. 
As a final step to achieve a matrix description of the plane to plane 

transform, we define a column matrix p containing the estimated pres­
sures pm 

Pi 
P-2 

P - - (15) 

PM 

and a matrix H consisting of the Green's function column matrices Hm 

r H/ i 
H^ . (16) 

Then from eqs. (14), (15) and (16) we obtain 

P = Hp (17) 

expressing the transform from S to S as a linear transform of the hologram 
matrix p. 

In the derivation of the transform formula (17), no advantage was taken 
1 ' V 

of symmetries or of the fact that the transform from S to S has the form of 
a two-dimensional spatial convolution. The convolution property is inher­
ent in the Rayleigh integral (7) since both R and 6 depend on r_ and _r' 
only through r_ - r_\ 

Due to its convolution property, the linear transform (17) from 5 to S 
can be done much more effectively through the use of two-dimensional 
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spatial Fourier transforms instead of the direct discrete integration of the 
Rayleigh integral, [12]. In the two-dimensional spatial frequency domain 
the convolution is performed by multiplication of the individual spatial 
frequencies with a complex transfer function. Since both Fourier trans­
forms and multiplication with a transfer function are linear transforma­
tions, they can be visualized as multiplications with transform matrices. In 
other words, if by the matrix F we represent a spatial two-dimensional 
Discrete Fourier Transform (DFT), and by the diagonal matrix Ta trans­
fer function multiplication, then F~l represents the inverse spatial two-
dimensional DFT and therefore the transform from S to S can be written 
as 

p = F'-1 T F p (18) 

Note that the matrices F, T a n d F~x are never actually calculated. They 
just represent the corresponding linear transforms. 

Now, if instead of eq. (16) we use the following definition of the trans­
form matrix H, 

H = Fl T F (19) 

then the transform from S to S can still be expressed as in eq. (17), 

P = H p (20) 

However, in eq. (20) His used only to represent the linear transforms F, T 
and F~] comprising the NAH transform tool. 

In the formulation (19) of the plane to plane transform, the diagonal 
matrix T expresses the translation, and thus it depends on the translation 
distance z away from the source, 

T = T{z) (21) 

Since a translation z , z > 0, followed by the opposite translation - z , must 
leave the original data unchanged, the following relation must hold: 

T(-z) = Tl(z) (22) 

which defines the transform matrix H = F ' T {-z ) F for a translation 
-z towards the source. In this process the amplification of evanescent 
waves is represented by large values on the diagonal of T(-z). 

As described in references [5] and [14], the calculation of a component 
(e.g. the normal component) of the particle velocity can be done by means 
of another transfer function Tu(z) instead of T(z), leading to another 
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transform matrix Hu. In other words, the column matrix u of particle ve­
locity data in the calculation plane can be expressed in the form 

u = Hup (23) 

with 

Hu - F-'TJz) F (24) 

In conclusion, the present section has given a matrix formulation of the 
transforms used in NAH. For details of the transformations and for a dis­
cussion of problems such as spatial aliasing, wrap-around errors and mea­
surement bandwidth, the reader is referred to the references. The matrix 
formulation will be useful for the description of how NAH can be applied 
in connection with a cross spectral representation of the sound field. 

Note, that the HIE and NAH transform formulae (17) and (20) have the 
same form, the difference being the content and practical implementation 
of the transform matrix H. 

3. The cross spectral approach to spatial 
transformation 

As stated in connection with the wave equation (1), the direct use of this 
equation through e.g. HIE or NAH puts some restrictions on the technique 
applied for acquisition of input data. In connection with a general station­
ary random sound source, only simultaneous measurements at all input 
data points meet the requirements. Further, spatial transformation of a 
single Fourier transformed time record of the field achieved this way 
through simultaneous recording cannot predict statistical properties of 
the wave field associated with a coherence less than one. 

All these limitations can be overcome by switching to a cross spectral 
description of the sound field. The cross spectrum function over the holo­
gram plane will prove to constitute a complete representation of the sound 
field in the sense that it allows prediction of any of the power descriptors 
of the field over a three dimensional region extending from the source sur­
face to infinity. Any degree of coherence can be handled by the cross spec­
tral description. Broad-band sources can be handled by measurement in a 
set of limited frequency bands. 
Two major problems shall be treated: How do we with a minimum of data 
acquisition obtain a full representation of the cross spectrum function over 
the hologram area, and how do we apply the NAH and HIE transforma-
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tions in connection with the cross spectral representation of the sound 
field. 

In the first and major part of this chapter we shall assume a monochro­
matic, non-coherent sound field. The implications of a finite frequency 
bandwidth are discussed in section 3.3.8. 

3.1. The cross spectral sound field representation 
To introduce the cross spectral representation of a sound field, assume 
first a time harmonic sound field with complex pressure function p(r_f) 
over the hologram plane S and complex hologram matrix 
p = [pn\ of pressures at the grid of measurement points r_'ni see Fig. 3. 

Assuming power normalization of the complex pressure function 
p (r_f), the cross-power spectrum Cm/ between grid points n and p can be 
expressed as 

Cnv = P*P» (25) 

which leads to the following expression for the cross-power spectrum ma­
trix Ccontaining the cross spectra between every pair (n,v) of measure­
ment positions: 

" Pi* " 
P 2 * r n 

C = p*pT= . [P!P2 - PN\ (26) 

This matrix C shall also be denoted the cross spectrum hologram matrix. 
In the formulae above, the superscript " *" specifies a complex 
conjugation. 

Similarly, the cross spectrum CmM between grid points £mand_rM on the 
calculation plane S can be expressed as 

£mM = PmPp (27) 

and the expression for the cross spectrum matrix C containing the cross 
spectra between every pair ( m , \L ) of output points becomes 

C = p*pT (28) 
Thus, for the case of a complex time harmonic sound field, the cross 

spectrum matrices C and C can be completely reconstructed from the 
complex pressure column matrices p and p respectively. 
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Consider next the general case of a non-coherent sound field. We need a 
mathematical model for such a sound field and its cross spectrum matrices 
Cand Cthat allow application of the previously described spatial transfor­
mation tools for complex time harmonic fields. 

For this, assume that the field is created by a set of L mutually uncorrel-
ated partial sources, each radiating a corresponding partial field. Assum­
ing each one of the partial sources to be a stationary random source and 
the corresponding partial field to be perfectly coherent (in the relevant 
regions) means that the coherence and cross spectra for that partial field 
can be obtained from the Fourier transform of a single, infinite, time re­
cord of the field. We shall therefore represent each of the partial fields by 
such a single Fourier transformed time record. Thus, for each frequency a; 
the single partial field is complex time harmonic, allowing the previously 
defined transform tools to be applied. 

Denote by pt the complex hologram matrix for partial source no. I, 
/ = 1, 2, ... , L. Then according to eq. (26) the cross spectrum hologram 
matrix Ct for partial source no. I alone takes the form 

C, = PfPiT (29) 

The cross spectrum hologram matrix Cfor the total sound field can now be 
obtained by observing the fact that the partial sources are mutually uncor-
related. Because of this fact, the corresponding radiated partial fields 
Pi(r) are also mutually uncorrelated, implying that they contribute inde­
pendently to cross-power spectra measured in the sound field: 

C = Z Q (30) 
l = l 

Similarly, in the output plane S the total cross spectrum matrix C equals 
the sum of the cross spectrum matrices Gt from the partial sources 

C = E Ct (31) 
i = i 

where Ct can be expressed as 

Ci = ptPif (32) 
Pi being the complex pressure column matrix for partial source no. I in the 
output plane S. 

A convenient compact matrix representation of the sum formulae (30) 
and (31) can be achieved by introducing matrices P and P the columns of 
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which are the complex pressure column matrices p{ and p ; respectively, for 
the uncorrelated partial sources: 

P = [P1P2 - PL] (33) 

P= [pKP2 -PL] (34) 

Use of these matrices allows the sum formulae to be rewritten in the fol­
lowing way: 

C = P * P T (35) 
£ = p+pT (36) 

A couple of concepts which will be useful in a subsequent analysis of the 
STSF technique shall be introduced. The hologram column matrix p{ for 
each one of the uncorrelated partial fields will also be denoted as the trace 
of that partial field over the hologram grid. Thus, each column of P repre­
sents the trace of a corresponding partial field over the hologram grid. 
Considering any one of the rows of P it contains the complex signal from 
the L partial fields measured at a single hologram grid position. Each row 
of P shall therefore be denoted as the view of the L partial fields as seen 
from the particular hologram grid position. Two points have independent 
views, if the L partial fields are seen with different mutual complex ratios 
at the two points. 

Notice that a view of the partial fields assigns implicitly mutual phases 
to the uncorrelated partial fields. These mutual phases are arbitrary, being 
determined by the arbitrary selection of the time record defining the par­
tial holograms pb and therefore they should not be given any physical in­
terpretation. This will be discussed later. 

In connection with the expressions (35) and (36) for the cross spectrum 
matrices C and £, it is important to realize that usually the number of 
independent sources L is much smaller than the number of measurement 
positions N in the hologram plane: 

L « N (37) 

Therefore, if the individual independent sources could be identified and 
the corresponding partial holograms p{ be measured, then a representa­
tion of the cross spectrum hologram matrix C in terms of the matrix P of 
partial holograms might be very advantageous. The matrix Cis of dimen­
sion NxN while P has only L columns and N rows. But in general we 
cannot identify the true independent partial sources. 
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However, equation (35) also provides us with the more general informa­
tion that the rank of C cannot exceed the number L of independent partial 
sources. In mathematical terms, denoting by / the rank of C: 

J - r ank(C) ^L (38) 

The rank of C will be smaller than L if there exists a linear relationship 
between some of the partial holograms pt. As a simple example assume two 
independent partial sources producing corresponding partial holograms 
which are identical apart from a complex factor. This occurs for example 
when a vibrational mode of a structure is excited by two independent inter­
nal sources. 

More precisely, the expression (35) for C shows that the rank / of C is 
equal to the number of linearly independent partial holograms pt. For any 
J greater than or equal to the number / of linearly independent partial 
holograms p h there exists a matrix A with J columns and N rows such that 
A can replace P in formula (35): 

A = I ax a2 ... ad (39) 

C = A* AT (40) 

The columns at of A shall be denoted as composite holograms, and the 
matrix A shall be said to represent C. Each composite hologram atis a 
linear combination of the partial holograms pt. For J = I the matrix A 
constitutes a minimum representation of the cross spectrum hologram 
matrix C. 

It can be easily verified that the linear combinations of ph constituting 
the columns at of A, are not unique. To show this, let A be a particular 
representation of C, C = A * A T, and let W be any J by J orthonormal 
matrix, W*W7 = WT W* =1, I being unit diagonal. Then the matrix 
AWis also a valid representation of Cbecause A *AT = (A W)*(A W) T. 
The representation A that is actually obtained in a specific application 
will depend strongly upon the method applied to achieve it. 

For J>I the matrix Wmay be selected in a way such that up to J-I 
columns of A W contain only zeros. Such columns may be removed, causing 
an effective reduction of J. 

3.2. Cross spectral formulation of HIE and NAH 
The subsequent section 3.3 gives a detailed discussion of the representa­
tion (40) of C in terms of composite holograms at and a description of an 
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efficient technique to obtain such a representation. At this point we pro­
ceed to the formulation of NAH in connection with the cross spectral de­
scription of the sound field. 

Based on the representations (35) and (36) of C and C in terms of com­
plex time harmonic pressure fields which are mutually uncorrelated, we 
can apply the matrix formulation of the NAH and HIE propagation tools 
described previously. Application of the NAH transform formula (20) in 
connection with partial hologram pt from independent partial source no. / 
yields 

pt = HPl I = 1,2,..., L (41) 

Since the column matrices pt and j5; constitute the columns of the matri-
ces P and P , respectively, we conclude from eq. (41) that 

P = HP (42) 

From eq. (42) and the expressions (35) and (36) for Cand C we now obtain 

C = P*PT 

= H*P*PTHT 

= H*{P*PT)HT 

= H*C HT (43) 

The derived transform formula 

C = H*C H1 (44) 

is seen to be independent of the number of and the individual forms of the 
uncorrelated partial fields. It expresses, how the NAH transform tool can 
be applied in connection with a cross spectral representation of an arbi­
trary monochromatic sound field. 

The cross spectral transform formula (44) could also be derived directly 
based on the fact that the cross spectrum C(JI,S_) between positions r_ 
and s_ satisfies the homogeneous wave equation (1) in both spatial vari­
ables r_ and s_, [1]. Thus, C(r_,s_) can be transformed from one plane to 
another by transformation in the two spatial variables r_ and s_ indepen­
dently, corresponding to the pre-multiplication with H* and the post-mul­
tiplication with HT in eq. (44). 

Since in practice we do not actually measure or calculate the large cross 
spectrum hologram matrix C, but rather use a representation in terms of a 
matrix A of composite holograms, the NAH transform tool should be for­
mulated for application in connection with the representation A. 
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Substitution of the representation formula (40) in the cross spectral 
transform formula (44) leads to 

C = H*C HT 

= H*A*ATHr 

= (H A)*(H A)' (45) 

Clearly, if we define the transformed representation A as 

A = H A (46) 

then the cross spectrum output matrix becomes 

C = A* A1 (47) 

Note that the columns at of A are simply the transformed composite 
holograms: a,■= Har By comparing eqs. (46) and (47) with eqs. (42) and 
(36) it is evident that we can transform the composite hologram represen­
tation A exactly as if it were a true partial hologram representation P , as 
long as we are interested only in calculating parts of the output cross spec­
trum matrix Ci'or the total sound field. In other words, we can transform 
the composite holograms a, as if each one of them represented a complex 
time harmonic sound field, although we know that in general each one of 
them represents a linear combination of uncorrelated complex time har­
monic fields. However, it should be recalled that these properties have 
been derived based on the assumption that the set of composite holograms 
a{ fully represent the cross spectrum hologram matrix C, ref. eq. (40). 

Considering the non-uniqueness of the representation A, it is evident 
from eqs. (46) and (47) that substitution of A W for A does not influence 
the result C7 the matrix Wbeing orthonormal, W* WT = WT W*= I, The 
calculated output matrix C therefore does not depend on which represen­
tation, A, one has obtained. 

For normal applications, only the diagonal of C will be calculated from 
A. The diagonal contains the autospectra at the output grid positions, 
while the off-diagonal elements of C are the cross spectra between these 
grid points. The autospectra allow the sound pressure and the acoustic 
potential energy to be calculated. 

Having discussed in detail the application of NAH for a simple plane to 
plane transformation of a cross spectral sound field description, we pro­
ceed to the problem of obtaining the other acoustical descriptors such as 
sound intensity, particle velocity and acoustic kinetic energy in the output 
plane. 
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Also here we shall need the representation P of the cross spectrum holo­
gram matrix C in terms of complex time harmonic partial fields for the 
derivations. 

Considering the partial hologram representation P, then for each of the 
partial holograms pt we can apply the NAH propagator Hu of eq. (24) to 
obtain the corresponding particle velocity distribution Hi in the output 
plane. Defining the matrix Uof partial field particle velocity distributions 
in the output plane as 

0 = uxu2 ... uL (48) 

then the transform (23) of all the partial holograms can be written in the 
compact matrix form 

V = HUP (49) 

corresponding to eq. (42) for the matrix P of partial pressure fields in the 
output plane. 

Instead of the pressure/pressure output cross spectrum matrix C, we 
shall now consider the pressure/particle-velocity output cross spectrum 
matrix Cpu which can be expressed in the following way: 

Cpu = P* VT (50) 

and the particle-velocity/particle-velocity output cross spectrum matrix 
Guu given by 

Cuu = &* W (51) 

The diagonal of Cpu contains full information about active and reactive 
intensity in the output plane, while Cuu provides us with the particle veloc­
ity level and the acoustic kinetic energy. We need to show that Cpu and Cuu 
can be obtained from the composite hologram representation A of the 
sound field. 

* V 

For this we define the matrix Au of composite field particle velocity dis-
tributions in the output plane S as follows: 

Au - Hu A (52) 

Application of the formulae (50), (42), (49), (35), (40), (46) and (52) allows 
the following rewriting of the expression (50) for Cpu: 
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= H* P* PTHJ 
= H* C Hj 
= H* A* ATH/ 
= A* AJ (53) 

For a corresponding rewriting of Cuu we apply formulae (51), (49), (35), 
(40) and (52): 

= H*UP* PTHJ 
= H* C Hu 

= H*UA* AT Hj 
= A* AJ (54) 

The derived expressions (53) and (54) for Cpu and Cuu, respectively, show 
that these matrices can actually be obtained by application of the standard 
NAH formulation on the matrix A of composite holograms. 

In conclusion, the present section has demonstrated why and how the 
power and energy descriptors of an arbitrary sound field can be obtained 
from a set of composite holograms at that represent the cross spectrum 
hologram matrix C. In this context, each one of the composite holograms 
a ; can be treated as if it represented an independent, time harmonic par­
tial field. 

3.3. An efficient principal component technique for obtain­
ing a cross spectral sound field representation 

The problem to be addressed in the present section will be how to achieve a 
representation of the cross spectrum hologram matrix C through a mini­
mum of data acquisition. Clearly, direct measurement of the entire matrix 
C will in general be an enormous task. As an example, a 25 x 40 measure­
ment grid (hologram grid), defining iV = 1000 measurement points, would 
require the measurement of 1/2N(N+1) = 500500 cross spectra, even 
when advantage is taken of the conjugate symmetry of C, C! = CT 

As described in the previous section, we wish to achieve a representation 
of C, C = A*A7, in terms of a matrix A, the columns of which are a set of 
composite holograms ah i = 1, 2, ... , J. For this we apply a principal 
component technique similar to that described in references [15] and [16J. 
A set of reference transducers provides a set of signals to be considered as 
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system inputs, while the signals at the hologram grid positions are consid­
ered as outputs. The cross spectra between the set of references enable the 
calculation of a set of principal components created by a set of virtual 
sources which are linear combinations of the true independent partial 
sources. The composite holograms aL created by these virtual sources at 
the system output shall be denoted as principal holograms, although the 
principal component expansion is done at the system input. 

3.3.1. Measurement employing a set of references 
With reference to Fig. 4 we apply again the mathematical model describing 
the total sound source as consisting of L uncorrelated partial sources pro­
ducing partial holograms ph I = 1, 2,..., L, on the measurement plane. 
Now, we introduce a set (a grid) of K reference transducers, and denote by 
r{ the K element column matrix of signals from partial source no. / mea­
sured by the K reference transducers. The column matrix rt represents a 
trace of the signal from partial source no. I over the references. Further-

K references N grid points 

L partial sources ^ ^ ^ \ 

890345 

Fig. 4. Schematic representation of sources, references and hologram grid. The refer­
ences can be positioned arbitrarily and need not be pressure transducers. The 
geometry is not representative 

21 



more, we also introduce a matrix R, the columns of which are the reference 
traces rh I = 1, 2,..., L, for the partial sources: 

R=[r1 r2...rL} (55) 

Each row of R represents the view of the L partial fields as seen from a 
particular reference. 

The measurement and calculation technique for extraction of a repre­
sentation A is based on a unifying view of the K references and N holo­
gram grid points. For this, we introduce the set of extended partial holo­
grams qh I = 1, 2,..., L: 

Qi - (56) 
Pi 

Each extended partial hologram qt contains the complex signals at the K 
references and N hologram grid points for the corresponding independent 
partial source no. I. The extended partial holograms qt constitute the col­
umns of a matrix Q defined as follows: 

Q^IQI Q2-QL] = (57) 
L [ P 

Here R and P are defined in eqs. (55) and (33) respectively. 
Having defined the partial source signals at the reference and hologram 

grid points, we can express the cross spectra between the various measure­
ment positions in terms of these signals. The matrix C+ of cross spectra 
between the positions of the extended hologram grid (reference grid plus 
hologram grid) can be expressed as 

C+ = Q*QT (58) 

which follows from the same arguments as those leading to the corre­
sponding expression (35) for the cross spectrum hologram matrix C. The 
matrix C+ shall be denoted as the extended cross spectrum hologram 
matrix. 
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Now, from eqs. (58) and (57) we obtain the following expansion of C + , 

C+ = (59) 
C A * r C 

where 

CR = R*RT (60) 

is the reference cross spectrum matrix, 

C A = R*PT (61) 

is the so-called scan cross spectrum matrix containing the cross spectra 
from the references to the hologram grid points, and 

C = P*PT (62) 

is the cross spectrum hologram matrix. Use of these matrices allows the 
basic principle applied in STSF to obtain a representation of C t o be de­
scribed through the following steps: 

1. Measure the reference cross spectrum matrix CR 

2. Measure the matrix CA of cross spectra from the references to the 
hologram grid points 

3. Calculate a representation A of C from the matrices CR and CA. 

3.3.2. Calculation of principal components 
The calculation of A mentioned under point 3 above is based on some as­
sumptions about the ranks of the matrices C+, CR and C. Following the 
discussion around eqs. (37-40), the rank I of C equals the number of lin­
early independent partial holograms p , from the set of independent partial 
sources. Two partial holograms are linearly indepedent if they exhibit dif­
ferent variations in amplitude and phase over the hologram grid. Similarly, 
the rank of CR is equal to the number of linearly independent reference 
traces r , , and the rank of C+ is equal to the number of linearly indepen­
dent extended partial holograms qt. These statements can be verified 
from the similar expressions (35), (60) and (58) for the matrices C, CR and 
C+ respectively. 

For the considerations of matrix rank we shall assume that the number 
K of references is much smaller than the number N of hologram grid 
points, K<&N. 
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Since both CR and C are submatrices of C+, we have 

r a n k ( C + ) ^ rank (CR) (63) 
r 

r a n k ( C + ) ^ rank ( C) (64) 

In terms of the partial fields from the independent partial sources, these 
inequalities express that neither the number of linearly independent refer­
ence traces rt nor the number of linearly independent partial holograms pt 
can exceed the number of linearly independent extended partial holograms 
Qi 

To obtain a complete reconstruction of the cross spectrum hologram ma­
trix C from the measured matrices CR and CA, we have to assume equal 
rank of CR and C+: 

rank (CR) = rank ( C+ ) assumption (65) 

Considering the expansion (59) of C+, the first K columns consisting of 
CR and C *T are assumed to be known from measurements. This part of 
C+ shall be denoted as C1 while the remaining part consisting of CA and C 
shall be denoted C2: 

" cR 
d - (66) 

C2 - (67) 
C 

C+ = [C x C 2 ] (68) 

Based on the expansions (58), (60), (61) and (62) of C+, CR, C^and C it is 
shown in Appendix 1 that 

r a n k f ^ ) = r a n k ( C ^ ) (69) 

Thus, because of our assumption (65) the measured matrix C1 has rank 
equal to the rank of C+, which means that the columns of C2 are linear 
combinations of the columns of Cx. Consequently there exists a K by TV 
matrix E enabling C2 to be expressed as 

C2 = d E (70) 
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Substitution of the expressions (66) and (67) for C} and C2 in equation 
(70) leads to the following system of linear equations 

CA = CRE (71a) 

C = CA*TE (71b) 

which can be solved for E and C: 

E = C„' CA (72) 

C = CA*T C ;/ CA (73) 

Equation (73) constitutes the basis for obtaining the cross spectrum holo­
gram matrix C in STSF. 

In connection with the inversion of the reference cross spectrum matrix 
CJI, the possible rank deficiency of this matrix must be taken into account. 
In general the inverse matrix CR ' must be replaced by a so-called general­
ized inverse C R

+. This matrix is defined on the basis of an eigenvector 
expansion of CR, 

K 

CR - S*D sT = YL dts*s'!' (74) 
i = 1 

where D is K by K diagonal with the real, non-negative eigenvalues on the 
diagonal, 

d, 0 

D = " ' d j (75) 
0 

_ 0 " 0 _ 

S is K by K orthonormal, 

S*ST = STS* = IK (76) 

IK being the K by K unit diagonal matrix, and sn i = 1, 2, ..., K, are the 
columns of S: 

S = [s, s2... a*] (77) 
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In eq. (75) dn i = 1, 2, ... , J , are the non-zero eigenvalues of CR in de­
scending order. Thus, J is now defined as the rank of CR: 

J^rank(CR) = rank ( C+ ) =* rank ( C) = I (78) 

Defining the generalized inverse D+ of D as 

d 2 

D+= ' ' d j 1 (79) 
0 

9 
W 

0 ' 0 

the generalized inverse CR
+ of CR is given the following definition: 

CJ ^ S*Z)+ 5 7 ' (80) 

From eqs. (74-80) it is easy to verify that CR C!{
+ = IK when CR has full 

rank, i.e. when J = K. In that case CR
+ is a true inverse of CR. Other­

wise CR
+ is inverse to CR only in the subspace spanned by the first J col­

umns of S. In the so-called zero-subspace spanned by the last (K-J) col­
umns no inverse exists. 

To show that the cross spectrum matrix Cis uniquely defined by eq. (73) 
despite the presence of a zero-subspace, we introduce a matrix Sx contain­
ing the first J columns of S, 

S{ = [ s 2 s2 ... S j ] (81) 

and a matrix S2 consisting of the remaining {K-J) columns: 

&•> — [5-7+1 s v + 2 ••• SK\ (82) 

Thus S can be written as 

S = [S, S,] (83) 

and since the columns of S are orthogonal, we have 

s;r s*2 = s : s* = o (84) 
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Similarly, we introduce a J by J diagonal matrix Dt containing the J non­
zero eigenvalues d-ti i = 1, 2,..., J, of CR: 

dj 0 

Dr = d 2 .9 (85) 

_ 0 " d J 

The complete eigenvalue matrix D defined in eq. (75) can then be written 
as 

Dx O 
D = (86) 

O O 

and from eq. (79) it is evident that the generalized inverse D+ of D can be 
expressed in the following way: 

~ D? O ' 
D+ = (87) 

O O 

Using the subdivisions of S, D and D+ given above, the eigenvector ex-
pansions (74) and (80) of CR and CR

+ can be reduced to 
J 

CR = S*xD1Sf = Y, di**8? <88> 
i = I 

J 

C+ = S^DtSl= £ d?*W ( 8 9 > 
i = 1 

Consider now the original system of linear equations (71) assuming C, 
Cs and CR to be known. Denoting by EQ a solution to eqs. (71), then be­
cause of the expression (88) for CR and the orthogonality (84) between Sx 
and S2 any matrix of the form 

E = E0 + S*2X (90) 
will also be a solution to eq. (71a), Xbeing any (K-J) by N complex ma­
trix. To test if E = EQ + S£X is a solution also to eq. (71b), we substitute 
E0 + S*X for E in this equation. Subsequent application of eq. (71a) with 
E = EQ + S^Xand the eigenvector expansion (88) of CR leads to the follow­
ing test equation: 

C = (E0*T + X*TS§ S*DXS1(EQ+S*2X) (91) 
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Since Si and S2 are orthogonal, the terms including X cancel, and we con­
clude that E = E0 + S*X is a solution also to eq. (71b). Use of CR

+ for 
CR~l in eq. (72) means that we select a particular solution E0 for Ebetween 
the infinity of possible solutions. However, since eq. (71b) holds for all of 
these possible solutions, we obtain the correct matrix Cwhen eq. (71b) is 
used to obtain C, no matter which solution E{) we have obtained for E. 

Substitution of CR
+ for CR~X in the expression (73) for the cross spec­

trum hologram matrix C leads to 

C = CA*TS*D+STCA 

= CA*TS*D?S1CA 

= (CIS.D^2)* (CIS.D^Y (92) 
where the eigenvector expansion (89) for CR

+ has been used. In eq. (92) 
Df1/2 is a J by J diagonal matrix with the numbers dfl/2, i = 1, 2,..., J, on 
the diagonal. 

A quasi-minimum representation A of C can now be achieved by 
defining 

A = Cl Sl D f1/2 (93) 

which can be split up in expressions for the principal holograms constitut­
ing the columns of A: 

at = df-^C^Si i = 1,2, ... , J (94) 

Clearly, because of eqs. (92-93) we have C = A* AT as required, see for 
example equation (40). Notice that the matrix A defined in eq. (93) has J 
columns instead of/, and therefore it does not constitute a minimum rep­
resentation when J>I. This is due to the fact that the principal compo­
nents are defined at the system input (the references). 

In practice, however, the matrix ranks (the number of non-zero eigenva­
lues) are not as well defined as stated in the foregoing treatment. The 
number of non-zero eigenvalues will always have to be determined by in­
troduction of some threshold level. Further, the rank J of the reference 
cross spectrum matrix CR will often be smaller than the actual rank of the 
extended cross spectrum hologram matrix C + , violating the assumption 
(65). We shall therefore consider the errors introduced in Cby application 
of the representation A defined in eq. (93) in connection with an insuffi­
cient set of references, i.e. a set of references causing the rank of CR to be 
smaller than the rank of C+. 
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3.3.3. Error analysis for insufficient reference sets 
To express mathematically the implications of using an insufficient set of 
references, we need to use again the model representing the total sound 
field as a set of complex time harmonic partial fields from a corresponding 
set of mutually uncorrelated partial sources. In other words, we assume 
that the cross spectrum matrices CR, CA and Ccan be expressed as in eqs. 
(60), (61) and (62) respectively. 

The partial field model expresses the reference cross spectrum matrix in 
terms of a matrix R, the columns of which are traces r { over the reference 
positions of the field from individual partial sources. For this matrix R we 
shall need a Singular Value Decomposition (SVD) of the following form: 

R = SrVT (95) 

Here, Vis L by L orthonormal, 
VV*T = y*rv = I I ( 9 6 ) 

11 being the L by L unit matrix, r is K by L diagonal with the singular 
values 7 ; on the diagonal, and S will prove to be the K by K orthonormal 
matrix appearing also in the eigenvector expansion (74) of CR. The singu­
lar values 7, are real and non-negative, and the number of singular values 
is equal to the smallest of the numbers K and L, min { K, L }. The number 
K of references can be smaller than or larger than the number L of partial 
sources. 

Substitution of eq. (95) in the partial field expression (60) for C{i leads 
to 

c„= s*r*v*TvrrsT 

= s* (r* rT) sT (97) 
showing that we can assume the same matrix S in the expansions (74) and 
(95) of CR and R respectively. Further, comparison of eqs. (97) and (74) 
reveals the following relations 

D = r*rT (98a) 

di = 7?7, = yf i = 1,2, ... , min {K, L] (98b) 

where eq. (98b) expresses the implications of eq. (98a) for the diagonal 
elements of the two diagonal matrices D and r. If K is larger than L, then 
we have dt ~ 0 for i > L, and since both d s and yt are real and non-nega­
tive, eq. (98b) implies that yt =*(dl = dt

1/2. 

29 



Now, following the expression (75) for D only the first J diagonal ele­
ments di are different from zero, J being the rank of CR. Thus, according 
to eq. (98b), J cannot exceed min {Ky L], and only the first J diagonal 
elements 7 ; of r are non-zero, which reflects the fact that CR and R have 
the same rank J because of their mutual relation (60). 

Since only the first J diagonal elements yL of .Tare non-zero, the SVD of 
R in eq. (95) can be rewritten in the following way 

J 

R = srvT = Yl yi*ivT (") 
i = 1 

where s n i = 1, 2, ..., K, are the columns of S a n d vl7 i = are the 
columns of V. Apparently the first J columns sL of S span the columns of R 
while the first J columns vl of V span the rows of R. 

Since the columns rtoiR are traces of the individual partial fields over 
the reference positions, the columns s;- of S constitute a set of orthonormal 
vectors spanning the K-dimensional complex space of possible traces over 
K references. The singular value yt represents the total degree of presence 
of the unit trace st in the traces r{ of the L partial fields. 

Similarly, the columns vl of V constitute a set of orthonormal vectors 
spanning the L -dimensional complex space of possible views of L different 
coherent partial fields. The singular value yt represents the total degree of 
presence of the unit view vt in the views seen from the K references. 

From the fact that only the first J singular values y, are non-zero, we 
conclude that only the first J unit views vL, i = 1, 2, ... , J , are seen from the 
K references. These views v{ shall be denoted as the principal views. Simi­
larly, only the first J unit traces sLJ i = 1, 2 , . . . , J, which shall be denoted as 
the principal traces, are covered by the L partial fields. 

It should be noted that the principal traces s, can be achieved through 
measurement of the reference cross spectrum matrix CR followed by an 
eigenvector expansion of this matrix, whereas the principal views vt are 
defined only in connection with a set of partial sources and related partial 
fields. Usually the true partial sources and partial fields are not known. 
However, the concept of principal views will prove to be a useful tool in 
understanding the importance and implications of reference selection in 
the STSF cross spectral technique. 

Denote by C the approximation to the true cross spectrum hologram 
matrix C obtained by application of the representation A defined in eq. 
(93) without requiring the matrix rank condition (65) to be fulfilled. Then 
C can be expressed as 
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C = A*AT (100) 

where the matrix A is defined in eq. (93). Substitution of the expression 
(61) for C j in eq. (93) followed by substitution of the singular value decom­
position (95) for R leads to the formula 

A = PV*T*r 5 * r 5 1 Z > 1
1 ' (101) 

This expression for A can be reduced by application of formulae (83-84) 
and (98b) with the following result 

A = P V* (102> 
O 

where Ij is the J by J unit diagonal matrix. 
In order to achieve further reduction in the expression (102), we intro­

duce a subdivision of the orthonormal matrix V. The first J columns con­
stituting the principal views are arranged in a matrix V] 

V, - [vx v2 ... Vj] (103) 

and the remaining (L-J) columns in another matrix V2: 

V2 = [vJ+l vJ+2 ... vL] (104) 

Thus F c a n be written as 

V = [V, V2] (105) 

The columns of V1 span the subspace of views of the L partial fields that 
are seen from the set of K references. V2 contains the views that are not 
seen from the references and perhaps do not exist for the particular set of 
L partial fields. 

Substitution of the subdivision (105) of V in the formula (102) for A 
leads to the simple expression 

A = P Vx* (106) 

which can be split up in expressions for the principal holograms as consti­
tuting the columns of A: 

a, = P v{* i = 1, 2, ... , J (107) 
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Equation (107) shows that each principal hologram a, is equal to the pro­
jection of the views from the hologram grid positions onto the correspond­
ing principal view vt from the set of references. Consequently, the part of 
the total sound field that is represented in A and therefore in C" can be 
understood as the total views from the hologram grid positions (the rows of 
P) projected onto the subspace of views seen from the references. This 
subspace is spanned by the principal views vL constituting the columns of 
v,. 

In relation to eq. (107) notice that the projection vectors v{ define the 
principal holograms al as complex linear combinations of the partial holo­
grams p i constituting the columns of P. The phases of the individual com­
plex weights in v, reflect the non-physical absolute phases assigned to 
each of the partial fields and mentioned in connection with eq. (33). From 
the singular value decomposition (99) of R one may verify that multiplica­
tion by a phase factor eJ(^ on partial field no. £ (column no. £ in R) intro­
duces the same phase factor eJ<^ on weight no. £ in all of the unit views Vj 
constituting the columns of V. However, since the phase factor ej,/> on par­
tial field no. J2 must be introduced also on the partial hologram p% con­
stituting column no. £ in P , equation (107) shows that the principal holo­
grams a i are unaffected by such phase factors on the partial fields. 

A formula relating the estimated and the true cross spectrum hologram 
matrices C" and Ccan be derived from eqs. (62), (100) and (106) by appli­
cation of the orthonormality relation (96) for F a n d the subdivision formu­
la (105) for V: 

C =P* PT 

= P*(VV*T) PT 

= P*(VXV*T + V2V*r) PT 

= C + (PV,*)'k(PV,*)T (108) 

Clearly, the difference between C a n d C can be understood as created by 
the orthogonal projection of the views from the hologram grid onto the 
subspace of views not seen from the references. 

Consequently, in order to obtain a correct estimate C of the cross spec­
trum hologram matrix C, all the different views of the L partial fields as 
seen from the set of hologram grid positions must be "spanned" by the set 
of views from the K references. 

On the other hand, the formula (108) relating C" and Calso shows that 
the STSF technique for estimation of Cis not very sensitive to violation of 
the above criterion for a set of references to provide a sufficient set of views 
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of the total source. This is due to the fact that the part of the total field 
included in the estimate C is obtained by an orthogonal projection. 

3.3.4, A simple example 
As a simple example, consider the measurement setup illustrated in Fig. 5. 
The main components of the setup are two small loudspeakers and a single 
reference microphone positioned on the symmetry plane between the two 
speakers. The two loudspeakers are excited by two identical, independent, 
narrow-band noise generators which have been adjusted to produce equal 
sound pressure levels at the reference. 

For this measurement setup we have K = 1, and since the total sound 
field can be modelled by two coherent, mutually uncorrelatecl partial fields 
— one from each o: the two loudspeakers — we have L = 2. 

Since only one reference is applied, we get only one view of the two par­
tial fields. To define this view we specify arbitrarily that both of the partial 
fields have phase equal to zero at the reference. Denoting by p the pressure 

Fig.5.Measurement setup with two independently excited loudspeakers and one 
reference 
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from each of the speakers at the reference position, the matrix R then gets 
the following simple form 

[1/2/2 ]]2/2 
R = [p p] = [ l ] [ftp 0] (109) 

V2/2 -V2/2 
* _ 

where the singular value decomposition of R is also shown. Since we have 
only one reference view (one row in R) there is only one non-zero singular 
value 7 , = ]/2p. Thus J is equal to one and there is only one principal view 
Vi constituting the entire matrix V}: 

V2/2 
v1 = _ (110) 

n/2 

This observation agrees with the fact that the number J of principal views 
can exceed neither the number K of references nor the number L of partial 
fields. 

The single principal hologram ax identified by the STSF cross spectral 
technique can now be expressed in the following way through application 
of formula (107): 

a 1 = l / 2 V 2 p 1 + l/2V2p, (111) 

Here, p , andp■> are the partial holograms from each of the two speakers. 
Recall that the absolute phases of the two partial fields have been (arbi­
trarily) set to zero at the reference position on the symmetry plane. Conse­
quently, w h e n p , andp ; , are superimposed in amplitude and phase, as pre­
scribed in eq. ( I l l ) , the sum will equal a hologram created by the two 
speakers excited in-phase with equal amplitude by a single generator. The 
principal hologram a , is equal to the single hologram that would be mea­
sured if the two speakers were excited in-phase with amplitude equal to 
^2/2 times the amplitude actually applied. 

The results obtained by application of NAH and HIE in connection with 
the above measurement will reflect the apparent coherent in-phase action 
of the two speakers. For example the radiation pattern will exhibit strong 
maxima and minima due to constructive and destructive interference, pro­
vided the distance between the speakers is sufficiently large. 

An actual STSF measurement as outlined above using 1 reference and 
13 by 8 hologram grid positions was performed and HIK was applied to 
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Fig. 6. Calculated sound pressure level along a line for a measurement employing one 
reference (dashed) and a measurement employing two references (solid) 

calculate the sound pressure level along a line in front of the hologram 
plane. The geometry of the measurement setup was selected as follows: 

Hologram grid spacing: 7 cm 
Distance from source to hologram plane: 10 cm 
Distance between the speakers: 35 cm 

and the output line was positioned 10 m in front of the hologram plane. A 
100 Hz bandwidth random signal centered at 1200 Hz was applied. 

The dashed curve in Fig. 6 shows the calculated sound pressure level. As 
expected, there is a pronounced interference pattern. 

However, since the contributions from the two speakers are actually un-
correlated, the observed interference is entirely due to an incomplete 
mathematical model of the field. There is no real physical interference. 

As discussed previously, the incompleteness of the mathematical model 
is due to an insufficient set of independent views of the uncorrelated par-
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tial fields from the references. At each hologram grid position, only the 
subspace of views seen from the references is included in the mathematical 
model (the principal holograms) and subsequently used in calculations. 
With the arbitrary selection of equal phase of the partial fields at the refer­
ence, only the in-phase equal-amplitude view of the two partial fields is 
included. Most of the hologram grid points, however, have a view including 
both an in-phase equal-amplitude component and an orthogonal anti­
phase equal-amplitude component. 
To include both of these orthogonal views in the reference measurement, 
we need to add another reference. Further, the second reference must 
have a view of the two partial fields which is different from the view seen 
by the first reference. For example, the second reference must be posi­
tioned away from the symmetry plane, if the position of the first reference 
in this plane is maintained. 

For the present measurement, two different views were obtained by po­
sitioning a reference immediately in front of each one of the loudspeakers. 
By this positioning each reference sees primarily one of the partial fields 
(loudspeakers), and therefore the views seen by the two references will be 
almost orthogonal. Complete orthogonality would be achieved, if each ref­
erence could see only one partial field. In that case the orthogonal princi­
pal views v1 and v2 would be scaled versions of the views seen from the 
two references. Further, the principal holograms al and a2 would equal 
the partial holograms p1 andp 2 -

The solid curve in Fig. 6 shows the sound pressure level calculated from 
the measurement employing two references. Clearly, the spurious inter­
ference pattern has been avoided. It should be mentioned that the mea­
surement was taken during a seminar with audience discussions and using 
a relatively short averaging time. 

3.3.5. Strategies for reference selection 
The above example leads to a treatment of the following problem: Which 
general rules can be applied for selection of references, and how can a se­
lected set of references be evaluated. 

Theoretically, a set of references provides a sufficient set of views of a 
composite source, if all the significant views seen from the hologram grid 
are just included. However, if an important view is present with a very 
small weight compared with other views, this will show up as an important 
but relatively small singular value y l in the expansion (99) of R, and there­
fore as a relatively small eigenvalue dt = y \ in the eigenvector expansion 
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(88) of the reference cross spectrum matrix CR. Since this matrix must be 
inverted in connection with the calculation of the principal holograms (see 
eqs. (92) and (93)), and since in practice we need to define an eigenvalue 
threshold in connection with this inversion, the small eigenvalue d L may be 
set to zero which will cause the corresponding principal view u^ not to be 
included. In other words, the set of orthogonal views seen from the holo­
gram grid must be present in the set of reference views with weights of the 
same order of magnitude. 

A criterion for reference selection derived from the above considerations 
is to select references with the objective of obtaining a maximum number 
of large eigenvalues dt of the same order of magnitude. 

If no a priori knowledge is available about the positions of the indepen­
dent partial sources, then the straightforward reference selection strategy 
is to distribute a set of references equally over the source and close to the 
hologram plane. By doing so, many different views of the source are ob­
tained, and the relative weights of the individual partial fields will be ap­
proximately the same over the set of references as over the set of hologram 
grid positions. Therefore, the eigenvalue threshold in the inversion of CR 
will usually exclude only the views which have a relatively small weights 
over both the references and over the hologram grid. 

If one or several partial sources can be identified before the references 
are selected, then references may be positioned to pick up individual par­
tial fields. In that case, however, special attention must be paid to the re­
quirement that all the important independent views of the set of partial 
fields must be seen with weights of the same order of magnitude from the 
set of references. 

3.3.6. Validation of a reference selection 
Having selected a set of references in connection with a practical measure­
ment, it is important to be able to evaluate, if the selected set of references 
provides a sufficient set of views of the actual source. For this evaluation 
we apply the so-called validation procedure which can be explained as 
follows. 

In order to formulate expressions for single cross spectra in the cross 
spectrum matrices C and C" we define a row matrix wn constituting row 
no. n in the matrix P of partial holograms. Thus, wn contains the view of 
the L partial fields seen from hologram grid point no. n. Use of this defini­
tion in connection with formula (62) for the cross spectrum hologram ma­
trix C allows the element Cni/ in row no. n and column no. v of C to be 
expressed in terms of wn and w„: 
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Cnv = w* wj (112) 

The element Cnv is the cross spectrum between hologram grid points no. n 
and no. v. 

A similar expression can be achieved for the corresponding element C'nv 
in the estimated cross spectrum hologram matrix C". From eqs. (100) and 
(106) we obtain 

C'„, = (wnV*)*{wvVt V (113) 

This formula expresses the cross spectrum between hologram grid points 
no. n and no. v estimated from the measurement of CR and CA. 

A relation between the true cross spectrum Cnv and the estimated cross 
spectrum C'nv can be obtained exactly as the corresponding relation be­
tween the cross spectrum matrices in eq. (108): 

C„, = C'„, + (wn VI )*(w„ VI ) T (114) 

This formula expresses the same as eq. (108), only for single elements of 
the matrices. 

In order to simplify the considerations to follow, we now define a column 
matrix en describing for the view wn from hologram grid point no. n the 
content of unit views vb i = J + l , J+2, ... , L, not seen from the references: 

en - (wn V$ ) T (115) 

Use of this definition allows the relation (114) between Cnv and C'nv to be 
rewritten as follows: 

Cnv = C'nv + e*Tey (116) 

As a special case (v = n) we obtain from eq. (116) the following relation 
between the estimated autospectrum C'nn and the true autospectrum Cnn 
at hologram grid point no. n: 

^ nn = ^ nn "*" en € n = ^ nn "*" €n ( 1 1 ' ) 

Here, ■ represents the length of a complex vector. 
From the relation (117) it is evident that the estimated autospectrum 

C'nn cannot exceed the true autospectrum Cnn: 

C'nn^ Cnn (118) 

If the principal views vit i = 1, 2, ... , J, obtained by the set of references, 
span most of the view wn seen from the particular hologram grid position, 
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then wn has only negligible components along the unit views vn 

i = J + l , J + 2 , ... , L, not obtained by the references, and thus C'nn will be 
close to Crin. 

An upper bound for the error on the estimate C'JH, of the cross spec­
trum Cm, can be derived from eqs. (116) and (117) above. Through applica­
tion of Schwarz' inequality for a complex unitary vector space we obtain 

C - f" = P *l P 

^ p e = \ C C V - C (119) 

From the inequalities (118) and (119) we conclude as follows. 11' a given 
set of references can be shown to provide good estimates C'nn of the auto-
spectra Cnn over the hologram grid, then we know that good estimates Cni. 
are obtained for all the cross spectra Cni, in the cross spectrum hologram 
matrix C 

Fig.7. S'I'SF validation plot for the measurement illustrated in Fig.5 employing 
only one reference 
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Fig. 8. STSF validation plot for the measurement illustrated in Fig. 5, but with trie 
use of two references 

The validation procedure applied in the STSF technique is based on the 
above conclusion. To enable a comparison of the estimated autospectrum 
C'nn and the true autospectrum CnnJ we measure the autospectrum C nn at 
each hologram grid position. The estimated autospectrum C'nn is obtained 
from eqs. (100) and (93). Notice that one hologram grid position can be 
evaluated separately by measuring only the cross spectra to that particular 
position from all of the references. These cross spectra constitute one row 
in CA

r, which in connection with the reference measurement CR allows 
one row in A and thus one autospectrum on the diagonal of C' to be calcu­
lated. The validation procedure can therefore be applied at selected posi­
tions over the measurement region before a complete measurement is 
taken. 

Fig. 7 gives an example of application of the validation procedure in con­
nection with the measurement illustrated in Fig. 5 employing only one ref­
erence. The two speakers were excited from two broad-band random gen­
erators, measurements were performed with a B&K 2032 dual channel 

40 



FFT analyzer, and 100 Hz bandwidth spectra were synthesized from the 
measured narrow-band spectra. Two spectra are shown superimposed for 
a position in front of the right speaker as seen in Fig. 5: the measured auto-
spectrum Cnn (boxes) and the estimated autospectrum C/nn (bars). Clear­
ly, there is a significant deviation between the two spectra. 

For comparison Fig. 8 shows the same validation plot for the measure­
ment employing two references. In this case there is good agreement. 

3.3.7. Other sources of errors than reference selection 
In both Fig. 7 and Fig. 8 there are frequency bands where the estimated 
autospectrum (sound pressure level) C'nn exceeds the measured autospec­
trum Cnn. This is due to the following types of measurement errors: 

• Non-stationarity of the source or the surroundings during the 
measurement. 

• Confidence level of measurements too low due to use of a short aver­
aging time. 

• Background noise. 

All errors of the types mentioned above have been neglected in the theoret­
ical treatment given previously. 

Under the discussion of reference selection, however, the use of an eigen­
value threshold in connection with the inversion of the reference cross 
spectrum matrix CR was mentioned. Such a threshold is very important 
when measurement errors are present. 

Considering only the errors in the measurement of the scan cross spec­
trum matrix CA, then provided the errors are random, they will be equally 
distributed over the unnormalized principal holograms C_/ s, appearing 
in eq. (94). In the normalization with \/]fdh these errors will be magnified 
for principal views vt and traces sl which have a small weight (eigenvalue) 
dt in the reference measurement. For sufficiently small eigenvalues dn the 
error level will exceed the level of the desired signal. By introduction of a 
suitable eigenvalue threshold level, it is possible to keep the contribution 
from these random errors below an acceptable average level over the holo­
gram grid. 

Systematic errors, arising in particular from non-stationarity during the 
measurement, cannot be controlled as efficiently by the eigenvalue thresh­
old. It is therefore very important to ensure a high degree of stationarity 
during the measurement. 
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Furthermore, random variations over the hologram grid will/can to a 
certain extent be removed by spatial filtering in connection with the HIE 
and NAH calculations on the principal holograms ar This is not in general 
possible — at least not as effectively — with systematic errors. 

Of outstanding importance is the stationarity during the reference mea­
surement, which constitutes the basis for the entire measurement. No spa­
tial filtering is possible in connection with this measurement. Therefore, a 
high confidence level should be aimed at by the use of a long averaging 
time. 

The influence of uncorrelated background noise can be more or less 
eliminated by selection of references which do not pick up the background 
noise or do it only to a very small extent. Use of a sufficiently long averag­
ing time will then eliminate the background noise from the measurement 
of the cross spectra, but not from the autospectra measured over the holo­
gram grid for the validation. The validation procedure therefore does not 
apply in the presence of strong, uncorrelated background noise. 

3.3.8. Frequency bandwidth considerations 
So far we have considered only monochromatic fields, i.e. fields with only a 
single frequency component. A general stationary monochromatic field 
has been modelled as a superposition of a set of mutually uncorrelated 
time harmonic fields, each of which are perfectly coherent. 

In connection with practical measurements on a stationary random 
broad-band sound source, however, a finite measurement bandwidth must 
be applied. Use of a broader bandwidth will tend to reduce both the mea­
surement time and the amount of data and data processing. 

A few general considerations shall be given concerning the effect of a 
small frequency bandwidth of the source or equivalently a small frequency 
bandwidth of the signal analyzer applied for measurement for cross- and 
autospectra. 

In principle, two sources with different frequencies are uncorrelated, 
when considered over an infinitely long time interval, no matter how small 
the frequency difference is. Consequently, if we assume a source which has 
some small bandwidth rather than being monochromatic, then theoreti-
cally it consists of an infinite number of uncorrelated partial sources with 
infinitesimal frequency steps in between. In relation to the sound field 
model applied in our analysis, the number L of partial sources and partial 
fields therefore becomes infinitely large. Further, the partial fields will in 
general have slightly different frequencies. 
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Considering two partial fields, however, with very small frequency dif­
ference, then usually the corresponding partial holograms p{ will have al­
most the same variation in amplitude and phase over the hologram grid, 
especially if they are generated by the same basic source mechanism. But 
partial holograms which are identical apart from a complex scale factor do 
not contribute independently to the rank I of the cross spectrum hologram 
matrix C. Such partial holograms are seen with the same view from all the 
hologram grid positions. Consequently they do not cause increased need 
for independent reference views. Thus, although the number L of uncor-
related partial fields in our sound field model increases towards infinity, 
the number J of principal holograms representing the cross spectrum ho­
logram matrix C usually remains small. 

In the HIE and NAH transformations, however, the bandwidth will in­
troduce some errors, because the simulated propagation of the wave fields 
is based on the assumption that all the principal holograms are monochro­
matic with the same frequency. An analysis of these errors is given in ref­
erences [10] and [11]. 

3.4. Effect of reference selection on calculated data 
The effect of the reference selection on the representation A of the ap­
proximate cross spectrum hologram matrix C has been described in the 
previous section: only the subspace of views seen from the references are 
included in A and thus in C". 

Consider now the transformed representation A. From eqs. (46), (106) 
and (42) we obtain 

A = HA = HPV* = Pvx* (120) 

which can be split up in expressions for the transformed principal holo-
grams al constituting the columns of A: 

a, = Pv* i = 1,2, ... , J (121) 

Denoting by C' the cross spectrum output matrix represented by A, 

& = A*AT (122) 

then C ' is an approximation to the true cross spectrum output matrix C 
expressed in eq. (36), and in analogy with formula (108) one easily verifies 
that 
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C = P*PT 

= C' + (PV2*)*{PV2*)T (123) 

Noting that the view of the (calculated) partial fields from an output 
point constitutes a row in P , the above expressions (121) and (123) show 
the following: At each output point only the part of the view which is seen 
also from the references contributes to the calculated results. 

This statement explains very precisely the results obtained in the exam­
ple of section 3.3.4, where one reference was applied in connection with 
two independently excited speakers. On axis the two speakers are seen 
with approximately the same view as from the reference, and here a good 
representation of the total field is achieved. In certain directions off axis 
only an orthogonal view is seen, so here we obtain no representation of the 
field. 

4. Overview of NAH measurement techniques 

Chapter 2 gave a short matrix oriented description of the HIE and NAH 
transform tools, which in their basic forms operate on a complex hologram 
p for a time harmonic sound field. Chapter 3 described the STSF mea­
surement technique, which allows the NAH and HIE transform tools to be 
applied in connection with a cross spectral representation of a non-coher­
ent sound field through a set of principal holograms a t . The present chap­
ter gives an overview of different measurement techniques that have been 
applied to obtain holograms for use in connection with the NAH trans­
form tool. Different types of signal or different measurement conditions 
may require different measurement techniques. 

4,1. Transfer function measurement techniques 
This class of techniques is typically based on the use of a controlled exter­
nal excitation of the sound source. The radiated sound field will then be 
completely coherent with the excitation signal. In frequency domain nota­
tion, the transfer functions pjp0 are measured, where p0 is some complex 
reference signal and pn is the complex sound pressure at hologram grid 
position no. n. Apart from an unimportant constant phase factor, the pres­
sure hologramp= [pn] can then be obtained by multiplying the measured 
transfer functions with the magnitude \p0\ of the reference signal. 

The first presentation [4] of the NAH technique applied a kind of trans­
fer function measurement technique, involving only a single frequency. 
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Several frequencies can be measured simultaneously by measuring a 
transfer function spectrum. 

Some techniques for measurement of transfer functions do not require a 
controlled external excitation. Then the basic requirements are perfect 
coherence of the sound field and the presence of a coherent reference sig­
nal. Other techniques, however, require the use of a controlled external 
excitation. 

The advantages of the transfer function method are the possibilities for 
non-simultaneous measurement such as the use of a scan technique, and 
for good suppression of interferring uncorrelated background noise. A 
main disadvantage is the coherence requirement arising from the use of 
only one reference in connection with non-simultaneous measurements. If 
no controlled external excitation is applied, then a certain stationarity of 
the source must be maintained during the measurement procedure. 

4.2, Snap shot techniques 
As indicated by the name "snap shot", this technique processes a specific 
time record of the entire sound field obtained by simultaneous recording 
at all hologram grid positions. 

At each hologram grid position _r'„ the sound pressure p (_r'„, t) is re­
corded over the time interval O^t^T. Then, the mathematical propaga­
tion of the sound field is done by Fourier transforming the time records 
p(r_f

n, t) to a set of spectra pn = p{r_f
n1 co) and subsequently for each fre­

quency OJ exposing the hologram p = \pn] to the NAH or HIE tools. The 
time domain signal at a given output position is subsequently achieved by 
inverse Fourier transformation of the calculated spectrum. 

The main advantages are independence of coherence and the possibility 
of animating the calculated time domain signals. For example, the tech­
nique applies for time domain studies of the radiation of impulsive noise. 
Other important advantages are the short measurement time and the fact 
that source stationarity is not required. 

The main disadvantages are the huge amount of transducers and record­
ing equipment necessary to measure simultaneously at each position, the 
inability to discriminate against uncorrelated background noise and the 
difficulties in obtaining confident power descriptors of stationary broad­
band noise fields. Coherence information cannot be obtained from a single 
measurement. 

The requirement for simultaneous recording can be avoided if a repro­
ducible signal is applied in connection with an accurate trigger facility. 

The technique has been described and tested by Maynard [17]. 
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4.3. The intensity /pressure technique (BAHIM) 
In this method the amplitude and phase of the hologram p are obtained 
separately in the following way. The amplitude \pn\ at hologram grid posi­
tion no. n is achieved through measurement of the sound pressure level. 
The phase <£ is obtained from the sound pressure level and the tangential 
components (Ix, Iy) of the sound intensity vector ]_ by application of the 
relation 

\p\2 

1 = - - ^ — X * (124) 
2p(jQ 

To obtain the phase $, a two-dimensional spatial integration must be per­
formed, [18]. 

The technique applies only in connection with perfectly coherent sound 
fields, which can be explained as follows. The relation (124) is derived for a 
monochromatic coherent sound field with a well-defined phase. With two 
mutually uncorrelated monochromatic sound fields, the total intensity is 
equal to the sum of the contributions from the two fields. Each term in this 
sum has its own phase function, which cannot in principle be related to the 
phase function of the other partial field. If the relation (124) is used to 
calculate a phase for the total sound field, then implicitly a phase has been 
defined between mutually uncorrelated components. In general this will 
cause errors if the phase is used in connection with for example HIE or 
NAH. 

A simple example will illustrate this. Assume the intensity/pressure 
technique applied in connection with the setup in Fig. 5. Thus, the source 
consists of two small independently excited loudspeakers with a spacing 
that is large compared with the distance from the speakers to the holo­
grams plane. The hologram obtained by the pressure/intensity technique 
will exhibit two areas (over the two speakers) with high pressure, and these 
two areas will have some mutual phase. Therefore, an interference pattern 
will be predicted in the far-field region by application of HIE. 

The effect is similar to that obtained by application of only a single ref­
erence in the STSF cross spectral technique, although the explanation is 
different. In the intensity /pressure technique the entire field in included, 
but in a wrong way. In the STSF cross spectral technique the total field is 
not included, but the remainder can be included by adding references. Us­
ing only one reference, the STSF technique requires much less measure­
ment and calculation than the intensity/pressure technique. 
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4A. The cross spectral technique (STSF) 
This is the technique which has been described in detail in the previous 
chapters. A set of references are selected and the following measurements 
are taken: 

1. The-matrix CR of cross spectra between all pairs of references 
2. The matrix CA of cross spectra from the references to the hologram 

grid positions. 

In case validation is to be used, the autospectra at the hologram grid posi­
tions are also needed. With many modern dual channel analyzers (e.g. the 
B & K 2032/34) the autospectra are obtained simultaneous with the cross 
spectrum. 

From the measured cross spectra CA> and CA a set of principal holograms 
a, are calculated that can be applied in connection with HIE and NAH for 
calculation of all power descriptors of the sound field. The calculation of 
the principal holograms requires an eigenvector expansion of CR. However, 
provided the number of references is much smaller than the number of 
hologram grid positions, then the calculations involved in establishing this 
eigenvector expansion and in calculating the principal holograms a, are 
negligible compared with the calculations involved in the NAH and HIE 
calculations. 

With only a single reference, the eigenvector expansion becomes trivial. 
In that case the method is verv similar to the transfer function method. 
Except for conditions where a special transfer function measurement tech­
nique is required, the cross spectral technique applying one reference can 
replace the transfer function technique. 

The main disadvantage of the STSF cross spectral technique is the large 
number of cross spectrum measurements needed in connection with a 
large complicated broad-band source. In that case, however, no other scan 
technique applies. The measurement time can be reduced by application 
of multi-channel measurement systems. As with other scan techniques the 
source must remain stationary during the measurement procedure. 

5. Conclusion 

The Spatial Transformation of Sound Fields (STSF1) technique consists of 
the following main components: 
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• An efficient principal component measurement technique to achieve 
a cross spectral representation of the sound field. 

• A validation procedure to evaluate the representation obtained by a 
specific set of references. 

• NAH and HIE formulated for application in connection with the 
cross spectral representation of the sound field. 

The basic theory has been outlined, and it has been demonstrated that the 
STSF technique applies to non-coherent broad-band sound sources with­
out the need for simultaneous measurements. The need for several refer­
ences in the cross spectral technique has been verified and explained. Fur­
ther, it has been shown that all power descriptors of the sound field can be 
obtained over a three dimensional region. No other existing technique has 
the same capabilities. 

A paper dealing with STSF instrumentation and applications will follow 
in a subsequent number of Technical Review. 
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APPENDIX 1 

In relation to eq. (66) we want to prove that CL and CR have equal rank. From eqs. 
(66), (60), (61) and (57) we obtain 

C, = Q* Rr (Al-1) 

which shows that 

rank (C,) < rank (R) (Al-2) 

Because of eq. (60) we have 

rank (R) = rank (CH) (Al-3) 

and thus from (Al-2) and (Al-3) 

rank (CH) > rank (C t) (Al-4) 

On the other hand, since CR is a submatrix of Cx (see eq. (66)) we have 

rank (CR) < rank (Cx) (Al-5) 

Inequalities (Al-4) and (Al-5) now lead to the desired result 

rank(C f fJ = rank (C,) (Al-6) 
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