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Outdoors propagation of spherical waves in free field

The D’ Alembert equation

Sound is produced by a source and it’s transmitted as propagation to a receiver. Propagation is a phenomenon which is just wave-like and that it could occur both outdoors and indoors.

In order to study the case of outdoors propagation in free field it has been introduced the so-called D’ Alembert equation, which takes its name from the physicist, mathematician and French philosopher who lived between the first and the second half of eighteenth century and who computed the equation.

In particular it is a combination of the continuity equation for fluid motion and of the first Newton equation.

First, in order to write it, let’s consider the Euler’s equation:
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Next we can introduce a scalar variable, that is called potential Φ of the acoustic field, which represents a sort of “common base” of sound pressure p and particle velocity v. Indeed we can note that the spatial and temporal gradient of the potential gives exactly the sound pressure and the particle velocity, as shown here:
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Finally it’s enough substituting these two identities in Euler’s equation to get the following formula: 

	D ’Alembert equation
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The D’ Alembert equation permits us to study sound wavefronts propagation in every point of a free field.
Integrating this formula, in fact, we can get the potential Φ and of consequence the pressure and velocity field.

Unfortunately this solving method results so much mathematically hard so we can get solutions only in a few cases. This is possible for progressive plane waves, standing plane waves and spherical waves radiated by a point source.
Solutions of D’ Alembert equation for spherical waves

Let’s consider a sound point source that produces spherical waves.

These waves are generated by a pulsating sphere of radius R, even called “monopole” source, which is represented in Figure 1.
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Fig.1 –Schematic representation of a pulsating sphere

This one is defined “pulsating” due to its continuous and periodical expansions and compressions.

Furthermore it’s possible supposing to know and to define two quantities related to this sphere:

· Volume velocity or Source strength (where S is the area of the spherical surface):
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· Radial velocity of the sphere’s surface (where 
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This formula could be written as in the following expression::
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where  
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In the previous equation we can note an imaginary exponential term, which represents the periodicity of the surface’s velocity. This representation is acceptable because, as we can see above, it could be written as a sum of periodic functions. In particular the imaginary unit is a mathematic artifice which doesn’t exist in the real world, where waves occur. Because of this it will be possible to neglect the fictitious imaginary part from the expression of the exponential term, obtaining back equation (5).

Finally we deduce that both (5) and (6) are the same in the real world, where imaginary numbers do not exist.

Now, known these quantities, we consider the pulsating sphere of radius R and in particular the outgoing waves, which means that 
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In this condition it’s quite easy to solve the D’ Alembert equation of the previous paragraph for spherical waves, extracting the value of particle velocity at any radius r:

	Particle velocity
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Then, thanks to Euler’s equation, it’s possible to compute the value of sound pressure:

	Sound pressure
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where in both cases 
[image: image16.wmf]l

p

p

w

2

2

=

=

=

c

f

c

k


In particular k is called the wave number.

Let’s take now the particle velocity (7), and let’s evaluate the modulus of the oscillating velocity:
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Looking at this formula it appears that the dependence of the modulus of particle velocity v from radius r follows a not-linear law, which can be approximated by a proportionality to 1/r2 for small values of kr, and by a proportionality to 1/r for large values of kr.

Effects and proprieties of spherical waves in free field

Proximity effect

The analysis of the solutions (8) and (9) of the D’ Alembert equation can be studied in two different kinds of sound field: the far field and the near field. These ones are not absolute definitions as meaning that, in any case, the real distance between source and receiver couldn’t be the only value to be considered, but it must be compared to the wavelength.
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Fig.2 –Far and close field difference

By the example in Figure 2 we note that the distance between source and receiver remains the same, however the field definition changes depending on the wavelength (in particular we get a far field if we consider the high frequency of the first wave and instead a near field considering the low frequency in the second wave).

So let’s study the proprieties and effects of both fields:
· Far field (
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Then we realize the term 1 in the velocity nominator (9) is insignificant compared to kr. So computing and simplifying, the square of r in the denominator disappears. At the same time the relationship between pressure and r is not affected by the value of kr.

Of consequence the proportionality laws in far field are the following:

	Far field 
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· Near field(
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In this case, in the velocity nominator (9) the insignificant term will be 
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 and no simplification occurs. The term 
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 will still be in the denominator. The relationship between pressure and distance will remain the same as before.

At last the p and v tend to these:

	Near field

	
    
[image: image27.wmf]r

p

1

µ

             
[image: image28.wmf]2

1

r

v

µ


                          (11)



This means that close to the source the particle velocity becomes much larger than the sound pressure. Furthermore a close field will often occur for low frequencies. Then, this will be important related to the different kind of microphones which exist; the more a microphone is directive, as cardioids or hyper cardioids ones, the more it will be sensitive to the particle velocity, as opposite to an omnidirectional microphone which senses only the sound pressure. So, the more a microphone will be placed close to the source the more low frequencies will be boosted, and this is called proximity effect.
The capability of understanding and taking advantage of this effect could be really useful for singers.
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Fig.3 –A singer who is  “eating” the microphone

The more the microphone is placed far from the singer’s mouth the more high frequencies will be captured (in proportion to low frequencies). This is the perfect situation for making high notes with voice. At the same time, in order to sing in a deeper way, the singer may decide to approach more and more the microphone, until giving the impression of “eating” it. And this boosts the low end of the spectrum of his voice.

Impedance

The impedance of a spherical field is a characteristic quantity, which is defined as the ratio of sound pressure and particle velocity. We can get the following expression of impedance using the solutions of D’ Alembert equation:
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Then it’s possible to analyse this quantity far or close to the sound source. For the following cases let’s consider this expression of impedance:

	Impedance
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· Far from the source: as it has been already explained the distance has to be evaluated in comparison with the wavelength. The far field occurs when it’s possible to suppose 
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In the impedance’s denominator the term 1 will be insignificant compared to 
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. This represents the same impedance of a plane, progressive wave, as the imaginary part vanishes. This means that pressure and velocity are in phase far from the source: the more the wavefront travels away from the source, the larger will be its curvature radius, meaning that it actually behaves as a plane wave. 

This is the most usual case of wave propagation.

· Close to the source: again the distance must be compared to the wavelength 
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In this condition the denominator becomes substantially 1, so we get finally 
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. Impedance is an imaginary number and of consequences velocity and pressure will have a phase shift of 90° (when the value of velocity is at maximum the value of pressure is null and vice-versa).

Then, for a little sphere in which 
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, it will be difficult to radiate energy. The sound intensity is given by:
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If we consider now the phase shift φ becoming very close 90°, Intensity will tend to zero. This is a sort of paradox, in which, while this small sphere is pulsating with extremely large velocity, it seems to not irradiate any energy.

We conclude that a “little” sphere will be able to irradiate less energy than a bigger one.
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Fig.4 –Impedance (Magnitude)

Figure 4 shows us the chart of normalized impedance magnitude, given by the ratio of impedance’s magnitude 
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 and so either distance or frequency. When 
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 increases the curve of impedance boosts up. Above a value of 
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 energy transmission will be easier and easier. Oppositely, when 
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 becomes small, the impedance decreases significantly and energy transmission will be harder and harder.

It is possible to draw another chart as in Figure 5. In the abscissa we still have 
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, while in ordinate we see the phase angle φ in degrees. So we can see here an explicit representation of the phase’s variation and of what it implies.  When 
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 decreases the phase shift tends to 90°, while if 
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 increases pressure and velocity result in phase. So it is clear that in the first case energy transmission will be hard because the Intensity tends to zero. 
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Fig.5 –Impedance (phase)

Energetic analysis and propagation law

Let’s consider a far field, the most common one, in which sound pressure and particle velocity are in phase and an energetic analysis is easy.

We defined the sound intensity I as the ratio of sound power and surface:

	Sound intensity
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 Then, if we get a point source of power W , it’s possible to note that a geometrical divergence occurs according to the increase of the distance.

In particular the area over which the power is dispersed increases with the square of the distance as shown in Figure 6.
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Fig.6 –Geometrical divergence

Now, remembering that a point source irradiates a spherical wave over a spherical surface S, we can write the following expression:
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Using this formula it is possible to find the equation which describes the spherical waves free propagation from an omnidirectional source (meaning that for every direction the same sound intensity is transmitted and that the space is free form any reflecting surfaces).

In order to find this equation let’s compute the intensity level 
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, which is the representation in 
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 of the sound intensity:
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Employing the value of intensity as we see in formula (16) and multiplying and dividing for 
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 (in order to extract the power lever 
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Next, computing and reorganizing the terms in logarithm:
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where:

· 
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Finally for a spherical and omnidirectional wave far from any reflecting plane the d’ Alembert equation could be replaced with the following one, that is the free field propagation law in dB:

	Propagation law in free field
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Unfortunately a spherical wave can propagate free from any reflecting surface in a really few cases. Free field conditions can be obtained in a lab, inside an anechoic chamber, which is shown in Figure 7. 

So, if the point source is near a reflecting surface it will be necessary to introduce a corrective factor.
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Fig.7 –An anechoic chamber

Directivity and general propagation law

As it has been said the formula (20) has limitations according to the position of the sound source

It’s possible to introduce the directivity factor Q, which is the ratio of sound intensity in direction 
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 and the average sound intensity in the case of an omnidirectional source:

	Directivity
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Figure 8 shown us schematically the difference between the waves radiated by  an omnidirectional source (blue) and by a generic one (red).
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Fig.8 –Omnidirectional source (blue) and generic source (red)

So directivity will change according to the direction and to the frequency.

In order to write a new general propagation law the directivity factor will assume a logarithmic form. 

Then we introduce the directivity index DI:

	Directivity index
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This index will be added to the formula (20).

In most cases we can assume to be in far field, in which case sound pressure and velocity are in phase and in this means that  
[image: image81.wmf]I

p

L

L

=

 (to express the formula with 
[image: image82.wmf]p

L

 is much reasonable because of our ears, which sense pressure, not intensity).

At last the general propagation law will be written as the following one:

	General propagation law
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We even note that the pressure level changes according to the distance from the source. If it is doubled, having so 
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This means that for spherical waves every time the distance is doubled the value of 
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This value is called decay factor 
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 and it will change according to the different kind of waves (for cylindrical waves the decay factor is 3 dB instead of 6).

Finally it’s possible to study the directivity factor when a point source is placed near one or more reflecting surfaces. We can for example differentiate four cases, as shown in Figure 9.
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Fig.9 –Q value according to its position close to reflecting surfaces

We differentiate these four cases:

· 
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 when the source is far from any reflecting surface. In this case it will be possible to use formula (20), in which the directivity index disappears: 
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· 
[image: image93.wmf]2
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 when the source is over a reflecting surface. Above the reflecting plane the intensity will disperse on a hemisphere and not on a sphere. So its value will be doubled because of reflection.
· 
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 when the source is in a corner. The intensity will be dispersed on a quarter of sphere, so its value will be 4 times the free field intensity.
· 
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 when the source is in vertex. As the previous cases the  intensity grows of factor of eight.
CYLINDRICAL FIELD

Differently from point sources, line sources (roads, railways, airtracks, etc.) are characterized by a cylindrical  field.

Through this model, you can consider single sources moving in time on a linear trajectory (for example: cars on the road) as a continuous event, that disperse the total power of the sound over a cylindrical surface.

This equality allows an easier approach to acoustic problems.

The cause-effect relationship giving the SPL value in a cilyndrical field is represented by two different equations:
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Where Lw’ is the sound power level per meter of a line source.

The first formula is the most used in acoustic problems, because it refers to concrete situations.

The second one refers to an unreal model (the pulsating cylinder: sound is always the same in all directions and in all points of the space), but thanks to the semplicity of the situation it represents, it is easier to prove and apply.

COHERENT CYLINDRICAL FIELD
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 Fig.10 – a pulsating cylindrical source

Considering an infinitely long (L>>r), pulsating cylinder, you obtain the following formulas:
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Where

I: sound intensity at distance r by the source.

W: sound power let out by the source.

S: cylindrical surface.

LW’: sound power level per meter of line source

-10∙log[r]: how sound power decreases with distance.

Comparing  spherical and cylindrical waves, you notice an important difference: the cylindrical waves are less sensitive with distance.

In fact 
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DISCRETE AND INCOHERENT LINEAR SOURCES
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 Fig.10 – line source made of a number of point sources

This figure is an example of linear source made of a number of point sources.

The horizontal line can be imagined as a road, and the single points as cars at distance a. The minimum distance between the receiver and the line source is d.

In reality, the single cars are incoherent point sources: the sounds they produce are not in phase and not correlated. 

Approaching a problem as a continuous event, you can study this example and apply equations of the cylindrical field.

The average car-to-car distance, a, can be computed as:
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The sound power level of each car, LWp, is consequently distributed along a piece of road with a length of a meters, providing a power level per meter, LW’, given by LWp - 10log(a). Hence, the cause-effect relationship becomes:
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Where:

LWp-10log(a) = LW’: sound power level per meter. It depends on the power level of a single vehicle and the distance between vehicles.

LWp: power level of a single vehicle. 

-10log(d): decrement of sound with distance. This term depends on the position of the receiver.

V: speed of the vehicle [km/h].

N: number of vehicles passing in one hour [number of vehicles/h].

The sound power perceived by a listener depends on the distance d from the linear source and the sound power level per meter.

LWp is fuction of the speed : it increases with speed.

For low speed the sound power of a single vehicle changes a little, but for high speed it changes with the square of speed.

· up to 50 km/h                              (    LWp is constant

· between 50 km/h and 100 km/h  (    LWp increases linearly with V (3dB/doubling)

· above 100 km/h                           (    LWp increases with V²  (6dB/doubling)
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Fig.11 – sound power level vs. speed

There is an important connection between the speed, the distance a and the power level: higher speed means bigger distance and power of a single vehicle LWp, but it is not the same for the sound power level per meter LW’.

In fact it increases with LWp, but it also decreases the vehicle-to-vehicle distance a. For this reason, the link between power level per meter and speed is non-linear.
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Fig.12 – sound immission level vs. speed

The best combination between Lwp and distance a gives us the “optimal” speed, about 70 km/h. It causes the minimum value of SPL (and consequently less noise pollution).

Due to technological innovations the value of the “optimal speed” is becoming even larger: the features of new cars make vehicles less noisy up to higher speeds, where the aerodynamic noise becomes predominant.

EXCESS ATTENUATION

In reality, between source and receiver ,there are often obstacles and other factors, which cause additional attenuation of sound level.

These factors are mainly:

1) air absorption

2) absorption due to presence of vegetation, foliage etc.

3) meteorological conditions (temperature gradients, wind speed gradients, rain, snow, fog, etc.)

4) obstacles (hills, buildings, noise barriers, etc.)

The term (L, in the spherical free field formula, quantifies all these factors :

• LI = Lp = LW - 20 log r - 11 + 10 log Q - (L       (dB) 

Most of these effects are relevant only at large distance from the source and at high frequency. The exception in shielding (maximum when the receiver is very close to the screen).

TEMPERATURE GRADIENT
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Fig.13 – effects of temperature gradient

Sound speed depends on temperature gradient (
	Temperature decreases with height (
	-
sound speed decreases too

-
sound rays curve upward

-
on the ground, at a certain distance from the source you find the shadow zone (there is no  sound)

	Temperature increases with height (
	-
this is a particular phenomenon caused by the fog  layer above the ground

-
sound rays curve downward

-
due to their particular curvature, sound rays can be perceived far from the source


WIND SPEED GRADIENT

In this case, the attenuation is not caused by the “transport” of the sound due to the wind. In fact, wind speed is very low in comparison with sound speed (340 m/s).

The real effect produced is the curvature of sound rays caused by wind gradient (the speed increases with height), similarly to temperature.

Downwind ( 
sound rays curve downward and jump over obstacles
Windward ( 
sound rays curve upward causing the shadow zone and strong  attenuation
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Fig.14 – effects of wind speed gradient

AIR ABSORPTION

	
	Frequency (octave bands)

	T (°C)
	RH (%)
	63
	125
	250
	500
	1000
	2000
	4000
	8000

	10
	70
	0,12
	0,41
	1,04
	1,93
	3,66
	9,66
	32,8
	117,0

	15
	20
	0,27
	0,65
	1,22
	2,70
	8,17
	28,2
	88,8
	202,0

	15
	50
	0,14
	0,48
	1,22
	2,24
	4,16
	10,8
	36,2
	129,0

	15
	80
	0,09
	0,34
	1,07
	2,40
	4,15
	8,31
	23,7
	82,8

	20
	70
	0,09
	0,34
	1,13
	2,80
	4,98
	9,02
	22,9
	76,6

	30
	70
	0,07
	0,26
	0,96
	3,14
	7,41
	12,7
	23,1
	59,3


The table above shows air absorption coefficients [dB/km] for different combinations of frequency, temperature and humidity.

You can notice that: 

· dry air causes more absorption than damp air

· air absorption increases with frequency (low frequencies travel easily; high frequencies are rapidly absorbed by air)
Noise screens

Commonly, a noise barrier is a solid structure, positioned between the source and the receiver, which blocks the direct path of sound propagation. 

Whenever a noise screen is positioned between the source and the receiver, it provides a reduction of the sound pressure level, and it can even eliminate it completely in those particular spaces called “shadow zones” where the sound does not travel at all.

To ensure an easier picture of the concept the noise barriers will be considered as thin walls.

The acoustic efficiency of a noise screen is represented by the insertion loss  ∆L
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Where L0 and Lb are the SPL values with and without the screen.

In most situations there are several different paths a sound can follow to reach the receiver when the barrier is installed:

	· Diffraction at upper of the screen: i.e. the barrier is very long and the effective heights not too high
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	Diffraction at sides of the screen: when the distance between the source and the screen edge is less than 5 times the effective height
	[image: image112.png]




	Passing through the screen
	[image: image113.png]




	· Reflection over other surfaces present in proximity: when the location allows it
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In this class we will deal only with the first two cases.

Noise screens : the Maekawa formulas

Depending on the case, we have to use different mathematical formulas to obtain ∆L.

In this class we are going to explain the different formulas for solve the first two abovementioned cases.

If we only consider the energy diffracted by the upper edge of a thin, infinitely long barrier we can estimate the insertion loss as:
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	for N>0 (for spherical field)
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	for N>0   (for cylindrical field)


We can see that in these formulas, called Maekawa’s formulas ∆L is function of the number N, which is the Fresnel number defined by:
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= difference between the diffracted path and the directed path. 
      It is always > 1 if there is a diffraction.

= wavelength

The Maekawa formulas are logarithmic formulas, so we obtain a result expressed in decibel (dB).

We can also express the Fresnel number N as function of the frequency because:

	
[image: image118.emf]because

1=<
f









N

=

2

d

l

=

2

f

d

c

because

l=

c

f




f  = frequency

c = sound speed

Maekawa chart

If we want to tabulate the results in order to see the relationship between the Fresnel number N and the insertion loss, we can use the Maekawa chart.

The line that describes that relationship is different depending on the case we are studying.

If we are studying a spherical field (generated by a point source) the Maekawa chart is the following:

[image: image119.png]



In the graphic, the straight, solid line represents the Maekawa formula, while the curved, dotted line represents the pattern obtained by connecting the results of actual measurements.

When the Fresnel number is larger than 1, these two lines coincide.

For N<1, instead, the Maekawa formula causes some errors: for better accuracy, it is recommended to employ the Kurze-Anderson formula (which indeed provides accurate results also for N>1):
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The following chart represents the relationship between the Fresnel number N and the insertion loss L for spherical fields and cylindrical fields.
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In this chart the blue line represents the Maekawa formula trend for spherical fields; the red line represents the Maekawa formula for cylindrical fields, and last of all, the gray line represents the trend of the Kirchoff formula, another formula to obtain the relationship between N and L and which behaves quite poorly in real world.

At the bottom of the chart we can see a figure that clarifies some concepts.
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	First of all we can see the meaning of :  is the path difference among the diffracted and the direct sound.

We can also give a definition to the term effective height.

Effective height heff: it is a length, expressed in meters, that represents the distance between the upper border of the barrier and the intersection with the barrier of the line connecting the source and the receiver.


heff is not the same height as the barrier’s height, because if source and receiver are not on the ground, or if the ground is not horizontal, the effective height is systematically smaller than the total height of the barrier. This concept can be better understood thinking that the barrier is divided in two parts: the lower one reaches the “see-not-see” height, at which the receiver can barely see the source through a line-of-sight which is tangent to the screen. All the further elevation of the barrier above this “line of sight” becomes the effective height of the barrier.

One could think that, for getting any effective sound attenuation, the barrier must be taller than the “line of sight”, and if the barrier is too short, allowing the receiver to “see” the source, there is no attenuation.

However, adopting the convention that the Fresnel number is positive whenever heff is positive, and that N becomes negative when heff is negative (that is, when the barrier is below the line-of-sight), we see that the Maekawa formulas still work, as shown in the charts above, if N > -0.3
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And this means that some small sound reduction is obtained even when installing a noise screen, which appears too short, as it allows the receiver to “see” the source.

When the value of N=0 (that is, when the height of the barrier is tangent to the “line of sight”), we still get a significant attenuation, which is equal to 5 dB for a point source and 3.0 dB for a line source, as shown by the Kurze-Anderson formula and by the Maekawa chart.

Noise screens: finite length
If the length of the barrier is not long enough, we must also consider its lateral edges.

Each edge has its own Fresnel number (N1, N2) and this causes a change in the formula relating the Fresnel number with the insertion loss.
The new formula is:
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Valid for values of N,N1,N2 >1 – in this formula Lb is the insertion loss caused by the upper edge, evaluated with the Maekawa or Kurze-Anderson formulas.

We have to use this formula whenever the side edge is closer than 5 times the effective height.
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The insertion loss changes with frequency: hence we have to draw the noise spectrum twice, both in absence and in presence of the barrier.

It is observed that the insertion loss increases with frequency.
In the figure below we can see the noise spectrum without the barrier (in blue) and the one with the barrier (in red).
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For evaluating the total, A-weighted sound reduction caused by a barrier in dB(A), we have to compute L separately at every frequency (for example in octave bands).

Then we compute the total A-weighted SPL for the spectrum before the installation of the barrier, we recompute the new total A-weighted SPL after the installation of the barrier, applying at every frequency the proper value of L, and finally we get the A-weighted insertion loss, LA, as the difference between the two A-weighted values of total SPL, before and after the barrier installation.
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This means that, whilst the values of L at single frequencies depends only on the geometry, the total insertion loss in dB(A) also depends on the spectrum of the noise source.

And, as shown in the figure above, the value of L increases with frequency. Hence, the very same barrier will provide a large reduction of the A-weighted noise level for sound sources having a spectrum that contains a lot of energy at high frequencies (example: train), and a significantly smaller reduction of the A-weighted SPL for noise sources having most energy at low frequencies (l large Diesel engines, trucks, highways, etc.).
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