

Spin-off of the University of Parma E-mail: armelloni@aidasrl.it

Not-Impulsive Techniques for Sonar Imaging

Enrico Armelloni, Angelo Farina, Luca Burgalassi.

Industrial Engineering Department - University of Parma - Italy

E-mail: enrico.armelloni@unipr.it

1st July 2005

Outline:

- Echo sounding, Impulsive and Not-Impulsive techniques theory;
- Test signals;
- Hardware and software implementation;
- Experiment results:
 - "Air" measurements;
 - "Water" measurements;

Echo sounding and impulsive signals:

- <u>Echo sounding</u> is an application of *Active Sonar*, this use of the sound waves allows to trace the sea-bottom profile measuring the distance between water surface and bottom.
- *Impulsive technique* has some defects:
 - High SNR \Rightarrow large impulse amplitude \Rightarrow resonanting tranducer \Rightarrow tipically with limited bandwidth.
 - If wide-band sound pulses are required \Rightarrow usually a high power sparker is employed \Rightarrow this source requires large and expensive equipment.
 - The pulses produced are not very repeatable.

1st July 2005

Industrial Engineering Dept. University of Parma – Italy

Not-Impulsive technique:

Considering a *"black box"*, an input x(t) (transmitted), the output y(t) (received), we want estimate the *Impulse Response h(t)*:

$$x(t) \longrightarrow h(t) \longrightarrow y(t)$$

Choosing a couple of signals x(t) and $x(t)^{-1}$ (x(t) reversed on the time axis), that satisfy the relation:

$$x \otimes x^{-1} = \delta$$

and applying the commutative property of the product is possible obtain the IR, h(t).

$$y \otimes x^{-1} = x \otimes h \otimes x^{-1} = y \otimes x \otimes x^{-1} = h \otimes \delta = h$$

1st July 2005

Int. Conference "UA Measurements: Technologies & Results" Heraklion, Crete, Greece

Not impulsive signals (1):

MLS (Maximun Length Sequence)

• Continuous, periodic, wide-band signal with white-like spectrum (*shift register* and *XOR port*), fast (*real-time*) & easy IR deconvolution by Hadamard Fast Transform algorithm.

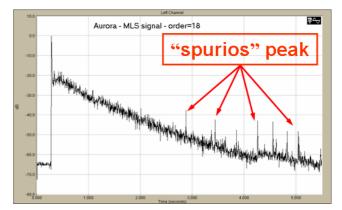
Linear & Logarithmic sine sweeps

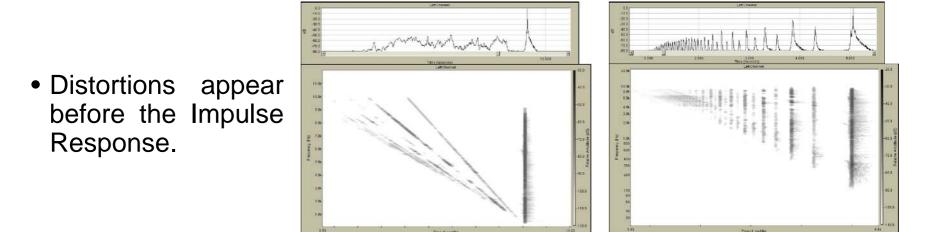
• signals in which the frequency increases or decreases *linearly* or *exponentially* with time.

Features

- Good Signal-to-Noise ratio (SNR).
- Possibility to pre-compensate for transducer's response.
- Possibility to create an excitation signal with arbitrary spectrum.

1st July 2005

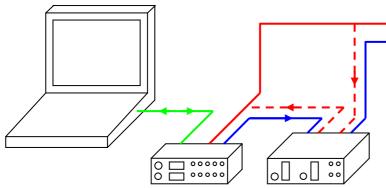



Industrial Engineering Dept. University of Parma – Italy

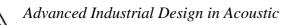
Not impulsive signals (2):

• Transducer's Non-Linearity causes, after deconvolution process with MLS, the presence of "spurios" peak in the Impulse Response.

1st July 2005


Int. Conference "UA Measurements: Technologies & Results" Heraklion, Crete, Greece

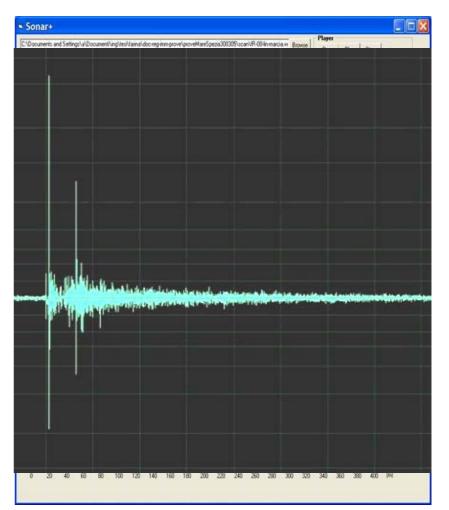
Hardware & Software (1):


Signal from Microphone / Hydrophone

Signal to Speaker / Piezoelectric transducer

- 1. Notebook supplied with Adobe Audition 1.5® and Aurora plugins.
- 2. Edirol FA-101 sound card (8 ch I/O and Fsmax = 192kHz) connected to PC by a firewire cable.
- 3. Power Amplifier.

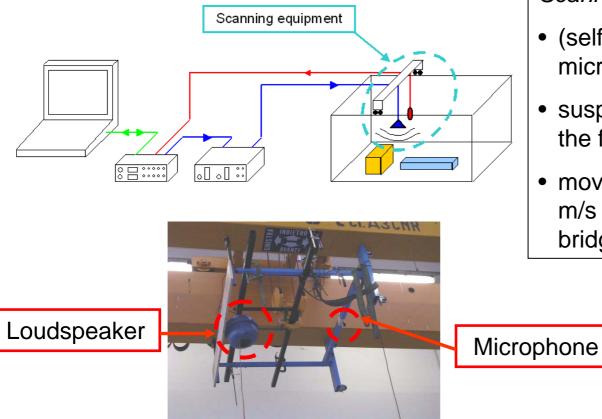
1st July 2005



Industrial Engineering Dept. University of Parma – Italy

Hardware & Software (2):

- Signals generated and recorded by Adobe Audition 1.5[®] and Aurora plug-ins.
- 2. Collection of IR's calculated by deconvolution in postprocessing mode.
- 3. Using a separate visualization program (SONAR) makes it easy to display the sequence of impulse responses as a traditional sonar graphical plot;
- 4. Using a GPS receiver is possible trace the route.



"Air" measurements (1):

 To draw the profile of the furniture inside a large shed (IED – University of Parma);

Scanning equipment:

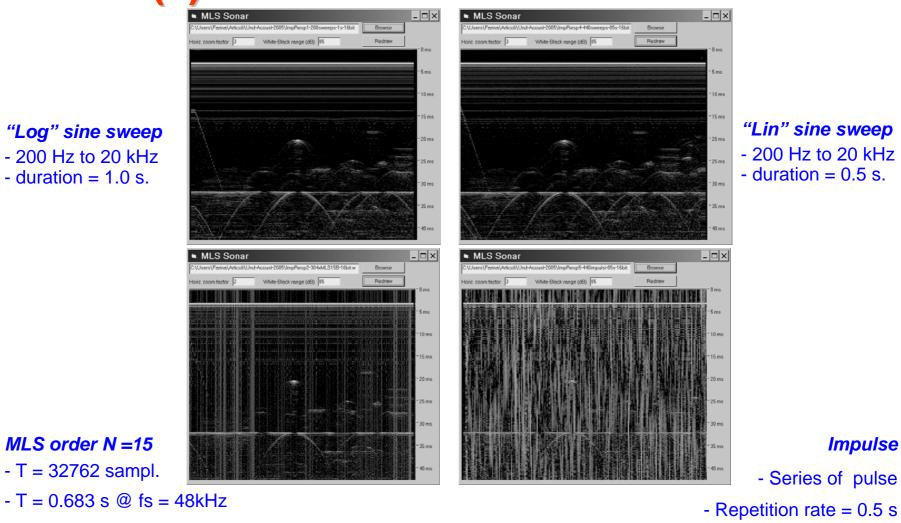
- (self-powered speaker & microphone)
- suspended at 5.5 m over the floor;
- moving at a speed of 0.13 m/s thanks to the loading bridge installed in the shed.

1st July 2005

"Air" (2): "log sinesweep" results

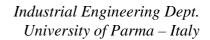
Test signal: "log" sine sweep, (200 Hz ÷ 20 kHz), duration 1.0 s.

1st July 2005



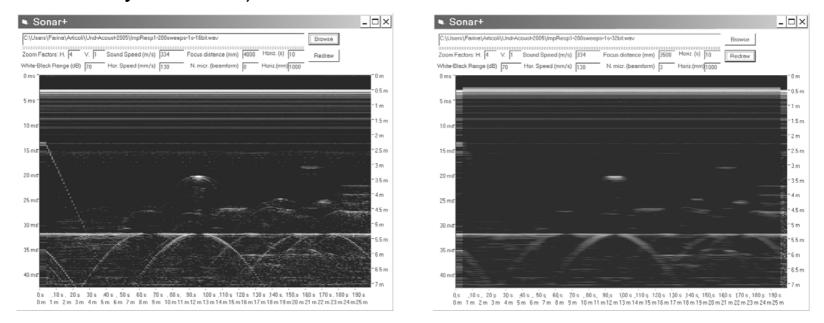
Industrial Engineering Dept. University of Parma – Italy

"Air" (3): results


"Log" sine sweep - 200 Hz to 20 kHz - duration = 1.0 s.

1st July 2005

MLS order N =15


Int. Conference "UA Measurements: Technologies & Results" Heraklion, Crete, Greece

"Air" (4): virtual beamforming

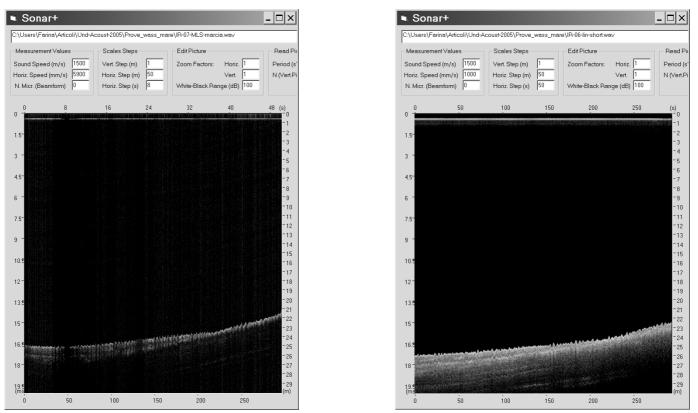
To increase the directivity of the scanning equipment processing software has been modified, allowing a <u>"virtual" beamforming</u> making use of a number of adjacent impulse responses (optimal results \Leftrightarrow virtual array of 7 mic.).

Measure without beamforming (left) and with fixed focalization at 3.5 m (right).

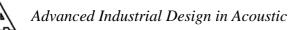
1st July 2005

"Water" measurements (1):

To draw the profile of the sea-bottom in front Palmaria island (near gulf of La Spezia – Italy).


- Special marine vessel "Whitehead III" (WASS), marched at 2 knot.
- 2 hydrophones ITC 5264 equipped with parabolic reflector.
- Pre-equalized test signals ($2.4 \div 45.0 \text{ kHz}$).

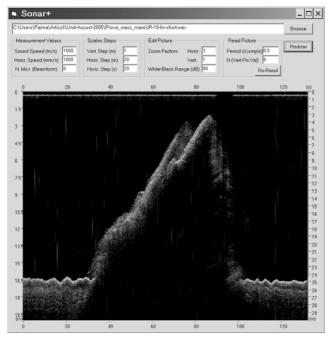
1st July 2005

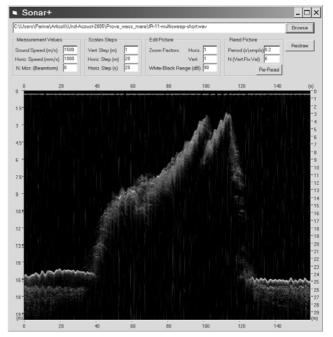

"Water" measurements (2):

MLS (left) produces an image with lower resolution and larger noise contamination respect to "Lin" sine sweep (right).

1st July 2005

Int. Conference "UA Measurements: Technologies & Results" Heraklion, Crete, Greece


Industrial Engineering Dept. University of Parma – Italy


"Water" measurements (3):

"Lin" sine sweep

2.4 to 45.0 kHz - duration = 0.5 s.

"Lin" sine multi-sweep 2.4 to 45.0 kHz

- Measurements performed in the open sea, in front of the Tinetto cliff.
- The micro ripple on the bottom profile is due to the boat pitching.
- Different bottom layer are well-defined.

1st July 2005

Conclusion:

- Not-impulsive techniques are very appealing for sonar imaging.
- The linear sine sweep shows the highest SNR. Its high immunity to external noise, coupled with the very fast and easy processing required for the deconvolution of the impulse responses, makes it very appealing for underwater measurements.
- Good penetration in the sediments.
- Signals MLS and Sine Sweeps are well-masked in a noisy environment.

Future Work:

 Implementation a low-cost system and software, operating in real time, using a DSP platform or a PC.

1st July 2005

Int. Conference "UA Measurements: Technologies & Results" Heraklion, Crete, Greece