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1. INTRODUCTION 
The paper describes the details and some validation results about a new implementation of sound 
scattering modelling inside a Pyramid Tracing computer program, for the simulation of the sound 
propagation in large rooms and outdoors. The approach makes it possible to take into account both 
scattering mechanisms (surface and edge), along with the frequency dependence of both effects. 
The surface scattering is described by means of the scattering coefficient (a physical quantity 
actually being standardised by an ISO WG) in each octave band; the edge scattering, instead, is 
computed empirically with reference to an hypothetical flat and smooth surface, and this effect is 
added to the surface scattering. 
A clever implementation made it possible to maintain an unique geometrical tracing for all the 
frequency bands, and thus the computation time is not increased over the previous version of the 
same program, which did not include explicitly the scattering effect. 
The comparison with experimental measurements and theoretical solutions has shown that the new 
algorithm greatly reduces the computational error in presence of strong reflections from scattering 
objects, provided that the correct value of the scattering coefficient is employed as input. 
 
2. BACKGROUND 
Geometrical room acoustics programs revealed soon that, in practical usage, the hypothesis of 
specular reflection does not hold. Consequently, most modern programs based on hybrid approach 
are employing some sort of simulation of the scattering phenomena [1,2,3]. In some cases, the 
implementation of the scattering effects required very complex approaches [4], and usually the 
frequency dependence of the scattering requires to repeat the geometrical tracing for each 
frequency band, causing intolerable computation times. 
In most cases, these programs require that user assigns a proper value of the scattering coefficient, 
for each frequency band and for each surface. The scattering coefficient δ is defined as the ratio 
between the reflected energy spread around in a diffuse way and the total reflected energy: 
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It is not clear how the reflected energy can be separated into specular and diffuse components, 
although some experimental methods were proposed [5]. Another approach, more pragmatic, is 
simply to find the “optimal” value of δ for each case, which is the value that minimizes the deviation 
between the numerical results and the experimental data [6]. 
In this scenario, the pyramid tracing algorithm (which is not hybrid) continued to be employed 
without any explicit consideration for surface or edge scattering effects [7,8,9]. It was surprising how 
this algorithm appeared to be more immune from the artefacts which afflicted other competing 
algorithms not taking into account the scattering phenomena: only very recently it was discovered 
that the original pyramid tracing scheme already contained a sort of intrinsic diffusion of the late 
energy [10], and this explained the reasonably good performances obtained with very little number 
of pyramids. Furthermore, this explained also why, increasing the number of pyramids, instead of 
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obtaining an amelioration of the overall accuracy, the program seemed to deviate systematically 
from the experimental results: the statistical behaviour was being pushed towards longer times, and 
the specular behaviour was being extended to higher order reflections. 
The author did not attempted to include an explicit treatment of scattering surfaces because, until a 
practical method for measuring experimentally the scattering coefficient was available, there was no 
point in asking to the user to guess for reasonable values of it, with the risk of causing errors much 
greater than those produced by the original algorithm with little number of pyramids (and 
consequently very short computation times). 
But now both AES and ISO are preparing new standards for the experimental characterisation of 
the scattering properties of materials, and the new method proposed in [6] seems capable of 
producing results compatible with both standards requiring only a minimum effort. Thus, it is time to 
modify the original pyramid tracing, introducing the capability of modelling explicitly the frequency-
dependent scattering coefficient of the surfaces, and the scattering caused by the edges of each 
panel. 
For continuity with the previous implementation, anyway, the constraints of maintaining the 
algorithm not hybrid, completely deterministic, and very fast were posed. In practice, only a minimal 
modification had to be done to the computing formulas, without the need of a separate geometrical 
tracing for each frequency band. 
In the following, first the theoretical formulation is given, then this is compared with the previous 
implementation. Two kinds of verification were finally attempted: comparison with experimental 
results in the case of first-order reflection on an highly diffusing surface, and comparison with 
statistical theoretical formulations in the case of a diffuse-field reverberating room.  
  
3. THEORY 
The algorithm described here is an extension of the pyramid tracing computer model Ramsete 
[7,8,9]. The pyramid tracing algorithm is well established nowadays, so it will not described 
completely here.  
The following picture shows what happens when a pyramid is reflected over a surface, with 
reference to two receivers, one which happens to be within the prosecution of the currently traced 
pyramid, the other outside of it.  
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In the original formulation (no scattering), only the first receiver receives an amount of acoustic intensity, 
computed following this equation: 
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in which W is the acoustic power of the source, ϑQ  is the directivity coefficient in the direction of 
original emission of the pyramid, r1,tot is the total path of the ray until the last reflection point, r2 is 
the distance from the last reflection point and the receiver, αi are the absorption coefficients of the 
surfaces where the pyramid was reflected and γ is the air absorption coefficient. 
Instead, when scattering is taken into account, the receiver n. 1 gets two different contributions 
(specular and diffuse), whilst receiver n. 2 gets only the latter. The specular contribution is 
computed as follows: 
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The equation for the specular intensity is easy to understand, as it differs from the original 
formulation only for the fact that the factor (1- δtot) was included. This means that the value of δtot 
separates the whole energy transported by the pyramid in a diffuse part and in a specular part. 
δtot depends on the values of the scattering coefficients of the surfaces where the pyramid was 
reflected (it is a sort of “cumulative scattering coefficient”): it always starts with an initial value of 
zero (direct sound), and reflection after reflection its value increases, approaching 1. After the N-th 
reflection, its value is obtained from the previous (N-1)th value and the local value of the scattering 
coefficient applicable for the point where the pyramid axis was reflected: 

( ) loc1N,tot1N,totN,tot 1 δ⋅δ−+δ=δ −−  
Also in this case the meaning is easy to understand: at each reflection, the energy which is already 
diffuse remains diffuse, but a fraction of the specular energy proportional to δloc commutes to 
diffuse, so that the diffuse part always increases. 
The local value of the scattering coefficient δloc depends on the scattering properties of the material 
assigned to the reflecting surfaces, described by the frequency-dependent scattering coefficient δ, 
and on the distance from the nearest edge of the surface. The scattering coefficient δ is defined as 
the ratio between the energy reflected in a diffuse way and the total reflected energy, for an infinite 
surface; for finite-size surfaces, the local value increases near the edges. A very simplified 
formulation of this phenomenon is considered inside the numerical model described here, based on 
a linear interpolation between the infinite surface coefficient δ, at a distance from the edge greater 
or equal to half the wavelength λ, and the value 1, when the reflection point is on the edge of the 
panel. Denoting the distance of the reflection point from the nearest edge with letter s, it becomes: 

2/
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The following picture shows the spatial distribution of δloc along a panel. 
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Finally, we have to derive a consistent formulation for the diffuse intensity. The first step is to 
compute the total power reflected from the triangular area dA obtained by the intersection of the 
pyramid and the reflecting surface: 
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The fraction δtot of this power is being spread uniformly in the hemispace in front of the reflecting 
surface, following the uniform intensity model (constant directivity of the diffuse intensity, not the 
cosine-varying Lambert’s model). Thus, for a receiver located at the distance r2 from the centre of 
the elementary reflecting area dA, the diffuse intensity should be: 
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This is fine for receivers not too close to the reflection point. But, if r2 is made very small, it can 
happen that the diffuse intensity computed with the above equation becomes terribly high, even 
larger than the total diffuse intensity, which was impinging over the area dA. This means that, when 
r2 is small, the diffuse power has to be diluted, at least, on the elementary area dA=4·π·r1,tot

2/Npyr: 

( )
tot,1r

2
tot1

tot
N

1i
i

max,diff e
r4

1QW

I ⋅γ−=
ϑ

⋅
⋅π⋅

δ⋅











α−⋅⋅

=
∏

 

Finally, considering simultaneously the dilution over those two surfaces, as described by the 
previous two equations, we obtain the comprehensive expression of the diffuse intensity: 
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In practice, after each reflection, the receivers are checked for being included in the pyramidal 
beam. If this is true, they receive the specular intensity. Then they are checked for being in the 
positive hemispace in front of the reflecting surface: if this is true, they receive the diffuse intensity. 
Thus a receiver, which is inside the pyramidal beam, receives both contributions. 
If a large surface is being hit by a large number of narrow pyramids, a given receiver will be inside 
the reflected beam of only one pyramid, but it will receive diffuse energy from the reflection points of 
all the pyramids that are hitting on the surface. This means that the specular reflection will produce 
a sharp peak on the impulse response, followed by a weaker diffuse tail coming from all the other 
diffuse contributions, as shown in the following picture: 
 

 
 

The above described approach does not require that a separate geometrical tracing is done for 
each frequency band, and thus preserves the very little computation time which was typical of the 
original pyramid tracing formulation. On the other hand, as demonstrated by the picture above, the 
new formulation produces realistic impulse responses, where also the first-order reflections are 
always followed by a diffuse tail, as it always happen with measured impulse responses [11]. 
But what does happen for the late reverberant tail? When the total path of the pyramid is very long, 
the term 4·r1,tot

2 is much greater than 2·Npyr·r2
2. Furthermore, the pyramidal beam is so huge that 

all the receivers are always within it, so that they always receive both specular and diffuse intensity. 
Thus they receive a total intensity given by the sum of diffuse and reflected intensities: 
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which is substantially equal to the intensity computed with the original algorithm (no scattering). This 
means that there is no difference in the late reverberant tail, and that the original algorithm 
intrinsically produced a diffuse reverberant tail.  
 
4. EXPERIMENTAL VERIFICATION 
The experimental assessment of the new algorithm was first undertaken for the simulation of the 
sound field reflected by a diffusing panel, considering only the first-order reflection. The test case 
was actually realized in the laboratory, suspending a diffusing panel just above a loudspeaker, in an 
anechoic environment. A movable microphone was employed for measuring the impulse response 
in 255 positions along a straight line. The following pictures show the schematic apparatus, and the 
Ramsete CAD model employed for the numerical simulations: 

Direct sound 

Specular reflection 

Diffuse reflections 
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The experiment was repeated with 4 different diffusing panels; details on the experimental 
apparatus are found in [6]. In each case, the intensities of the direct and reflect sound were 
compared for the 255 microphones, for evaluating the spatial consistence between numerical 
simulation and experimental values. The following 4 pictures show the result of the comparison. 
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Schroeder-type diffuser 
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Curved Panel , normal to cylinder axis 
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Curved Panel , along cylinder axis 
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These very satisfactory results were obtained inserting in the computer model the values of the 
absorption coefficient and of the scattering coefficient measured with the new technique described 
in [6] – employing wrong values for the input data, of course, cause much wider errors. 
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5. THEORETICAL VERIFICATION 
The second verification was done by verifying that the numerical solution of a diffuse-field 
reverberant room produces results in close agreement with the theoretical formulations commonly 
accepted in statistical acoustics, such as the Sabine or Eyring formulas. 
The test case was an irregularly-shaped large room, with a little value of the absorption coefficient 

(0.1 everywhere). The simulation was first conducted 
with the original formulation of the pyramid tracing 
algorithm (no explicit scattering) and then with the new 
one: in the second case, two very different values of the 
scattering coefficient were employed (0.1 and 0.9). The 
room volume was 2496 m3, and the total surface was 
1068 m2. The omnidirectional source was located at 
10m from the receiver. The picture on the left shows the 
geometry of the irregularly-shaped room. 
Due to the shape of the room, in principle the values of 
the sound pressure level and of the reverberation time 
should not change with the scattering coefficient. The 
following table compare the theoretical and numerical 
results: 
 

Case SPL (dB) T60 (s) 
Theoretical (Sabine) 95.7 3.74 
Numerical – no scattering 94.9 3.48 
Numerical – d = 0.1 96.0 3.54 
Numerical – d = 0.9 96.6 3.57 

 

It can be seen that the new formulation reduces the deviation from the theoretical values, but the 
original formulation was indeed quite good. This confirms that, even without an explicit treatment of 
the diffuse sound field, the original pyramid tracing algorithm was capable of correctly modelling the 
statistical behaviour of the late part of the reverberant tail, provided that an optimal number of 
pyramids (usually quite little) is employed. Thus, the main advantage of the new formulation is to 
remove the dependence of the accuracy on the optimal choice of the number of pyramids, but this 
has to by paid by the fact that now it is necessary to input a new set of data: the scattering 
coefficient value at each frequency band. 
The following pictures compares the impulse responses computed with the original algorithm (left) 
and with the novel one (right), employing 2048 pyramids. 
 
 

 



Numerical Simulation of the Scattered Sound Field – A. Farina 

Only minor differences appear in the first 200ms, barely noticeable in the above picture: some gaps, 
which were present between the first order reflections, are now filled up with diffuse energy. 
 
6. CONCLUSION 
A modified pyramid tracing algorithm has been described, which takes explicitly into account the 
scattering properties of materials. The new formulation does not cause a significant increase in the 
computation time, nor it requires larger number of pyramids to be launched: thus the algorithm 
confirms to be one of the faster methods for room acoustics simulation. 
The results revealed to be much more adherent to the reality for modelling the first reflections, and 
tend asymptotically to converge with the results of the original pyramid tracing formulation in the late 
reverberant tail. 
The knowledge of the exact values of the scattering coefficient revealed to be critical for the correct 
simulation of the first order reflections; instead, for the estimate of robust parameters (such as 
sound level and reverberation times), which are dominated by the late reverberant tail, the choice of 
the scattering coefficient values revealed to be much less critical.  
In any case, the numerical formulation of the algorithm is perfectly consistent with the measurement 
technique described in [6], and this suggests that it will be possible to create in a little time a first 
data base of experimentally measured scattering coefficient values. 
The natural prosecution of this work will be the subjective evaluation of the audible simulations 
obtained by the auralization technique, based on the numerically predicted impulse responses, in 
comparison with experimental ones. 
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