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A very fast deconvolution method, which is based on the Fast Fourier Transform, can be used
to designamatrix of causal finite impulse response filt ers whose performanceis optimized at a
large number of discrete frequencies. The method is very efficient for both single-channel
demnvolution, which can be used for loudspedker equalisation, and multi-channel

deconvolution, which can be used to design cross-talk cancellation networks.

The fast deconvolution algorithm esentialy provides a quick way to solve, in the least squares
sense, a linea equation system whose wefficients, right hand side, and unknowns are z
transforms of stable digital filters. Frequency-dependent regularisation is used to prevent sharp
pe&ks in the magnitude response of the optimal filters. A z-domain analysis demonstrates that
the regularisation works by pushing the paes of an ided optimal solution away from the unit
circle, and in doing so reduces the dfedive duration of its time response. However, the
algorithm asaumes that it is feasible to use long optimal filters, and it works well only when
two regularisation parameters, a shape fador and a gain fador, are set appropriately. In
pradice the values of the two regularisation parameters are most easily determined by trial-

and-error experiments.

EDICS code: SA 2.3.3
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l. INTRODUCTION

Demnvdutionin its most basic form can be described as the task of cdculating the inpu to a
discrete-time system from its output [1, p.14. It is usually assumed that the system is linea
and that its inpu-output mapping is known with good acaracgy. In amustics and audio,
single-channel deconvdutionis particularly useful sinceit can compensate for the response of
imperfed transducers such as headphores, loudspeders, and amplifiers [2], [3]. Even the
room resporse can be compensated for if desired [4], [5]. Multi-channel deconvdution is
necessary in the design o crosstalk cancdlation systems and virtual source imaging systems
6], [7], [8], [9], [10Q]. In pradice, audio-related deconvdution problems usualy involve long
impulse resporses, and since the methods that are traditionally used to design control systems
for conventional engineaing applications generally assume arelatively low filter order, those
methods are nat entirely suitable for our purpose. It is mainly for this reason that we ae

interested in developing computationally efficient filter design algorithms.

Demnvdution in the time domain tends to lead to complicaed expressons for the optimal
filters regardlessof whether one chocses to use an adaptive method [6], [7] or a dosed form
method [9], [10]. This is because time domain filter design is global in the sense that all the
unknown coefficients must be aljusted simultaneously — the problem canna be decomposed
into a smaller number of independent problems. Consequently, ore has to solve alarge
number of couped linea equations (althouwgh it is ometimes possble to take alvantage of
the spedfic structure of the eguation system [5]). Nevertheless the global optimisation
scheme ensures that the optimal filters make very good se of their coefficients, and they are
therefore very efficient from an implentation pant of view. The trade-off between design-

and implementation efficiency means that time domain methods are gpropriate when the
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optimal filters are short (ead contains less than a few hunded coefficients as a rule of

thumb).

Demnvdution in the frequency domain tends to leal to simple expressons for the optimal
filters gnce their resporses can be cdculated individualy at a large number of discrete
frequencies [11]. This means that the eguations are uncouded and can be solved
independently (thisis equivalent to solving alinea equation system whaose efficient matrix
is of diagonal form). However, if the magnitude resporses of the optimal filters are very large
within a narrow range of frequencies, the impulse resporses correspondng to the optimal
frequency resporses will ring for a long time and passbly even cause an urwanted wrap-
around effed. Regularisation can prevent this from happening by reducing the longest time
constant of the optimal filters, bu even so the optimal filters gill need to be long enough to
ensure that the impulse resporses have dfedively died away well before the ends of the
filters. Consequently, the optimal filters do nd make very good wse of their coefficients, and
they are therefore nat very efficient from an implementation pant of view. Frequency domain
methods are gpropriate when the optimal filters are long (ead contains more than a few

hundred coefficients as a rule of thumb).

A modeling delay can be used to ensure that the optimal filters perform well not only in terms
of amplitude, bu also in terms of phase [1, Example 7.2.3. By delaying the output by a small
amourt, typicdly a few millisecnds, it is poassble to compensate for norrminimum phase
comporents that would atherwise caise the optimal filters to be ather unstable in forward
time, or noncausal. Our method ses a modeling delay, and we will not consider minimum-

phase implementations.

Regularisation is a method that is  commonly used when oreis faced with an
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il -condtioned problem [12, Sedion 18.4. The basic ideais to prevent the solution from
having some undesirable feaure by adding a “smocthness’ term to the st function that we
wish to minimise. A suitable choice of the smoothnessterm can improve the @ndtioning of
the problem substantialy. In addition, the value of a regularisation parameter must be set
appropriately. The regularisation parameter determines how much weight to assgn to the
smoathnessterm, and since regularisation by its very nature impases a subjedive @nstraint
on the solution, it can be difficult to come up with a reliable objedive method for determing

this weight.

In the following, we extend the fast decnvdution method described in [11] to include
frequency-dependent regularisation, and we show that the dfed of regularisation can be

conveniently explained by a pole-zero analysis of a matrix of idealised optimal filters.

II. SYSTEM DESCRIPTION

The discrete-time multichannel decnvdution groblem is diown in block diagram form in
Fig. 1. We will use ztransforms to dencte discrete time filters and signals [1, Chapter 3], and
sometimes these z-transforms will be referred to as paynomials even though strictly speeking
their powers are negative. We define the following column vedors: u(z) is a vedor of T
observed signals, v(2) is avedor of Ssourceinpu signals, w(z) is a vedor of R reproduced
signals, d(2) is a vedor of R desired signals, and e(2) is a vedor of R performance eror
signals. The matrices A(2), C(2), and H(2) represent multi-channel filters. A(2) is an RxT
target matrix, C(2) is an RxS plant matrix, and H(2) is an SxT matrix of optimal filters (H is
now denoted withou the subscript m,A that was used in [11]). We as2ume that the dements

of A(2), C(2), and H(2) are finite impulse resporse (FIR) filters. Note that the vedors read
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alphabeticdly u, v, w along the lower half of the block diagram, and that their dimensions
red T, S R (R S T, in reverse); this will make the notation easier to remember. The
comporent Z" implements a so-cdl ed modeling delay by shifting all the dements of u by an
integer number of m samples [1, Example 7.2.3. The problem is to determine H(z), and in

order to achieve this it is necessary to in@d) in some sense.

lll. EXACT LEAST SQUARES DECONVOLUTION

The idea cetral to ou filter design algorithm is to minimise, in the frequency domain, a st

function of the type

J=E+BV 1)

where E is a measure of the performance eror e and V is a measure of the dfort v. The
positive red number  is a regularization parameter that determines how much weight to
assgn to the dfort term. As B is increased from zero to infinity, the solution changes
gradudly from minimizing E only to minimizing V only. By making the regularization
frequency-dependent, we can control the time resporse of the optimal filters in qute a
profoundway. However, instead of spedfying 3 as afunction d frequency it is advantegous

to build the frequency-dependence iNto

It is convenient to consider the regularization to be the product of two comporents: a gain
fador and a shape fador. The gain fador is the conventional regularization parameter 3, and
the shape fador B(2) is the z-transform of adigital filter that amplifies the frequencies that we
do not want to seeboosted by H(z). Frequencies that are suppressd by B(z) are nat affeded

by the regularization. Although it is the frequency response, and nd the time resporse, of B(2)
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that isimportant, we prefer to design B(2) in the time domain. The phase resporse of B(2) is

irrelevant sinceH(2) is determined by minimizing an energy quantity.

The derivation d H(z) in the general multi-channel case is diredly analogous to that

presented ifl1]. We find
H(2) =[CT(z")C(2) +B Bz )B@)I] C'(z)A@D) " @)
In the single-channel case, this result simplifies to

C(zH A2
C(z")C(2 +B B(z")B(2

H(z) = z" (3)

This geda case is very important, na only becaise it is often encourtered in pradice bu

also because it suggests a way to analyze the more complex multichannel result.

IV. POLE-ZERO ANALYSIS

It is ®en from Eqg. 3that in the single-channel case H(2) can be naturally expressed in rational
form, just like a onventional infinite impulse resporse (lIR) filter. Consequently, we can
lean abou the properties of thisfilter by looking at its pales and zeros in the mmplex plane.
The zeros of H(2) are the zeros of the numerator of Eq. 3,and the poles of H(2) are the zeros
of the denominator of Eq. 3. The positions of the poles with resped to the unit circle ae
particularly important. Poles nea the unit circle make the time resporse of the filter decay
away very slowly [13, Sedion 8.2.4. The time nstant 1, in samples, associated with a
single pae dose to the unit cirle is approximately propationa to the redprocd of the

distancea between the two, so



Kirkeby et al,Fast Deconvolution using Frequency-Dependent Regularization

T=— (4)

when r<<1 [14]. If the pdle is just inside the unit circle, the filter's time resporse will be
right-sided and decegy away in forward time, if the pde is just outside the unit circle, its

response will be left-sided and decay away in backward time [15, Chapter 2].

A. General results; the single-channel case

We start by observing that if Eq. 3 is written as a fraction,

_P@

H(z) = o) )
then the zeros dfl(2) are the zeros of the numerator polynorfi@),

P(2 =C(zYA@) z" (6)
and the poles dfi(z) are the zeros of the denominator polynorQig),

Q(2) =C(z")C(2) +B B(z")B(2) (7

B. Two single-channel examples

In order to illustrate how the regularisation modifies the poe-zero structure of H(z), we

consider the simple system

C(2)=1-7" (8)

C(2) has asingle zero onthe unit circle & z= 1. If we set A(2) = 1 (flat target resporse with
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zero phese), m= 0 (no modeling delay), and B(2) = 1 (frequency-independent regularisation),
then from Eq. 3 we find

1-z1

" a2 8 ©

H(2) has a zero &= 1, and two poles, also on the real axis, at

z:liﬁﬁé;ﬂ5+% (10)

Whenp<<1, a series expansion of this expression gives
z=1x /g +0(p) (11)

which shows that for small values of B, the distance from the two pdes of H(2) to the unit
circleis propartional to the square roct of . For example, if § = 0.0001 then the two pdes of
H(2) are on the red axis at 1.01 and 0.99.According to Eq. 4, this corresponds to a time
constant © of approximately 100 samples snce both pdes are adistance of approximately
0.01 away from the unit circle. We now consider how frequency-dependent regularization

modifies the pole-zero structure of a slightly more complex system.

Fig. 2 shows the properties of the sequence c(n) ={1,0,0,0,0.96}. This filter has been
constructed from its four zeros at 0.99, £0.99, and -0.99. Note that the zeros are evenly
spacal aroundthe unit at a distance of 0.01 away from it. Fig. 2a shows the moddii of the
zeros of C(2) plotted against their arguments in radians (note the scding of the y-axis) , and

Fig. 2b shows the magnitude respoideof C(2).

Fig. 3 shows the pole-zero map o the filter H(2) cdculated from Eq. 3when § = 0.003
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and A(2) = 1. In Fig. 3a, the shape fador is constant as a function d frequency which means
that B(z) = 1. In Fig. 3b, the shape fador is afirst order high-passFIR filter, B(z) = 1-z* (see
Eqg. 8, whose single zero is on the unit circle & 1. The drcles are the zeros, given by the
zeros of P(2) (seeEqg. 6), and the dosses are the pades, given by the zeros of Q(2) (seeEq. 7).
If B was zero, such aplot would show half the paes being cancdled ou exadly by zeros. The
paositions of the surviving poles would correspond exadly to the zeros of P(2) (seeFig. 2a).
When (3 isincreased, however, the poles move avay from the unit circle in the regions where
B(2) contains energy. In Fig. 33, B(2) is an all-passfilter, and so al the poes have moved. In
Fig. 3b, B(2) is a high-passfilter, and so the pdes bend away from the unit circle & high
frequencies (at arguments nea +n) whereas the pole just outside the unit circle & zero radians
is cancdled by a zero of P(2) becaise the regularisation daes not have ay effed at low

frequencies.

Fig. 4 shows the magnitude resporse |H| of H(z) cdculated with frequency-dependent
regularisation (solid line) and with noregularisation (dashed line). Thus, the solid line in Fig.
4a oorresponds to the frequency resporse of the signal whose pole-zero map is plotted in Fig.
3awhereas the solid linein Fig. 4bcorresponds to the frequency resporse of the signal whose
poe-zero map is hown in Fig. 3b.It is e that the frequency-dependent regularization hes

succeeded in attenuating high frequencies without affecting low frequencies.

C. General results; the multichannel case

Just as in the single-channel case, we start by writing the optimal filter matrix H(z) (seeEq. 2

in the form of a “fraction”,
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H(2) =Q(29P(2). (12)
Here,Q(2) is a squar&xS matrix,

Q(2)=C"(z")C(2) +B B(z")B(!, (13)
andP(2) is anSxT matrix,

P(2 =C"(zYA(2) z™. (14)

If weinvert Q(2) by dividing its adjoint adj[Q(2)] by its determinant Q(2) [16, Sedion 0.8.2,

we can write

H(p =00, (15)

Q(2)

It is e that the determinant of Q(z), which isa scdar function d z as in the single-channel
case, isa ommmon denominator of al the dements of H(2). Thisis a strong result; it implies
that the dements of H(2) share a @mmon set of pales given by the zeros of the paynomia
Q(2), and in addition that those poes are not related in a simple way to the zeros of the

elements of)(2). Consider, for example, the two-by-two system

e 01 05z'0O 16
Z) =
@=Ges 1 0 (16)

If B(2) =1 andA(2) is an identity-matrix of order 2, then

0 125 05(z+z)0O
0

05(z+zY) 125 ¢ n

Q(29) =

10
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The two off-diagonal elements of Q(2) ead have two zeros on the imaginary axis at +i and -i
whereas the diagonal elements do nd have any finite zeros at al. Nevertheless Q(2) has two
zeros on the red axis at 0.5 and ancther two at +2, and nore of these incides with the

zeros of any of the individual elementsQ(z), or C(2).

D. The roots of the denominator Q(2)

It is no trivial matter to find the roots of a paynomia of high order, and there is an
overwhelming amourt of literature available on the subjea (see [17] for a very
comprehensive bibliography). A very reliable numericd methodfinds a paynomia’sroats by
cdculating the agenvalues of its related companion matrix, bu this algorithm is of
complexity O(N®) since it spends most of its time by transforming the polynomial's
companion matrix into Hessenberg form (see[18, Chapter 13] for detail s). Consequently, it is
quite expensive computationally. As an aternative, one can use an agorithm based on the
principle of deflation and roat pali shing which is approximately of complexity O(N?), but this
method can faill some caes (see[19] for details). As a rule of thumb, a paynomia whaose
degreeis less than 500 can easily be fadored on a fast PC by the egenvalue method. A
poynomia whose degreeis greaer than 5,000is likely to be difficult to fador no matter
which methodis used. As an aternative to explicit fadoring of a high-order polynomial, there
exists efficient methods for courting the number of roats contained inside a drcle of a given

radius[20], [21].

Note that the “inverse” of the roct-finding problem, which is the problem of cdculating the
coefficients of a paynomia from its zeros, is extremely sensitive to roundoff errors (as

demonstrated by Wilkinson's famous example [18, p. 20]). Even pdynomials of relatively

11
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low order, say, N =50, are usually unreaognisable when reconstructed from their roots using
doulde-predsion arithmetic, and for this reason it is generaly not pradicd diredly to
manipulate the poles and zeros of adigital filter. There ae few general results that are useful
to us but the foll owing threerules give some idea dou what to exped in pradice The rules

concern symmetry, clustering, and attractors.

First, the roots of Q(z) aways appea in groups of two or four. Since Q(2) is equal to Q(zY) it
follows that if z, is a zero of Q(2) then so is 1/z,. Furthermore, zeros off the red axis must
appea in complex conjugate pairs snce the cefficients of Q(z) are red. Note that the
symmetry in zand z* means that for eat zero inside the unit circle, there is a @rrespondng
zero ouside, and this effedively spails our chances of finding a stable optimal filter (apart

from in a few special cases).

Seoondy, theroots of apaoynomial of high order are not scatered all over the complex plane,
but rather “...the roats of a randam paynomia tend to be evenly distributed in angle and
tightly clustered nea the unit circle a the degree of the paynomia increases’ (quae from
[19]). Since most signals we mme acossin pradice such as measured impulse resporses,
have a cetain degree of randamness built into them, this asymptotic result acairately

describes what is most often observed with experimental data.

Thirdly, the roats of B(z')B(2) adt as a kind o attrador set for the roats of Q(2) for large
values of B. It is easly verified that when B is very small, the roots of Q(2) are those of
C(zY)C(2) wheres when B is very large, the roots of Q(z) are those of B(z1)B(2).
Consequently, for some choices of B(2) it is posgble that excesgve use of regularisation can

cause some of the poles to be pulled badk towards the unit circle. Even though this will

12
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happen only for very large values of B, it can be ared concern when ore tries to implement
“bladk box” regularisation routines. Note that when frequency-independent regularisation is
used, B(2) is a @mnstant and consequently it has no roats. The implicaion d this is that for
large B the atradors are zero (the origin) and complex infinity (points very far away from the

origin), and so in this case the regularisation will push all the poles away from the unit circle.

Finally, it shoud be mentioned that the pradicd value of knowing the roots of Q(z) is mainly
limited to the cases where we can pick out isolated roots nea the unit circle. Thisis usualy
not possble when we ae deding with pdynomials of very high order, and so in this case the

pole-zero analysis is not necessarily a useful design tool.

V. THE FAST DECONVOLUTION ALGORITHM

Although z-transforms are eay to manipulate formally, we caina exped the time sequence
correspondng to an arbitrarily choosen z-transform to be both causal and stable. In fad, if the
z-transform has poles away from the origin and infinity, the crrespondng time sequenceis
not even unique. However, if we dedde that the sequencés region d convergence has to
include the unit circle then the filter will be stable & long as there ae no pdes on the unit
circle. Each pde inside the unit circle will make a ontribution that decays away in forward
time whereas eat pde outside the unit circle will make a ontribution that decays away in
badkward time. The filter can, in principle, be made caisal by shifting its impulse resporse
very far to the right (delaying it by alarge anourt). In this ssdion we show how to cdculate a
matrix of optimal causal FIR filters that ead contain Ny, coefficients. Since this method ses
Fast Fourier Transforms (FFTs), N, must be a power of two. The implementation d the

inversion method is graightforward in pradice FFTs are used to get in and ou of the

13
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frequency domain, and the system is inverted for ead frequency in turn. Since using the FFT
effedively means that we ae operating with periodic sequences, a ¢/clic shift of the inverse

FFTs of the optimal frequency responses is used to implement a modelling delay [??].

Eq. 2gives an expresson for the resporse of H(z) as a mntinuouws function d frequency. If an
FFT isused to sample the frequency resporse of H(2) at N, paints without including the phase

contribution from the modeling delay, then the valuél(K) at those frequencies is given by
H(k) =[C" (K)C(K) +B BY(K)B(K)I] "C" (K)A(K) (18)

where k denotes the k'th frequency line; that is, the frequency correspondng to the complex
number exp(i2k/Ny). The superscript H denotes the Hermitian operator that transposes and
conjugates its argument, the superscript * denotes complex conjugation o its sdar
argument. In the single-channel case, CM(K) is equivalent to C (k). In order to cdculate the

impulse responses of a matrix of causal filters the following steps are necessary.
1. CalculateA(k), B(k), andC(Kk) by takingNy-point FFTs of each of their elements
2. For each of thé&\;, values ok, calculateH (k) from Eq. 18

3. Calculate one period ¢i(n) by takingNy-point inverse FFTs of the elementsHyk)
4. Implement the modeling delay by a cyclic shifnoamples of each elementhgh)

The exad value of mis nat criticd; a value of Ny/2 is likely to work well in all but a few

cases.

VI. A MULTICHANNEL EXAMPLE: CROSS-TALK CANCELLATION

14
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The system given by Eq. 16is avery crude gpproximation to the matrix of transfer functions
that one has to ded with when designing crosstalk cancdlation retworks. Fig. 5 shows the
geometry of such a system. The two loudspedkers gan only ten degrees as ®en by the
listener; we refer to such aloudspedker arrangement as a stereo dpade[22]. In pradice it is
necessry to take into acourt the influence of the listener's head on the incoming sound
waves, and we will now use frequency-dependent regularisation to design a aosstak
cancdlation retwork based ona matrix of modeled head-related transfer functions (HRTFs).
The HRTFs are cdculated from a analyticd rigid sphere model [23], [24]. The sphere is
asumed to have aradius of 7cm, and the eais nat quite & oppasite positions, but rather they
are pushed badk ten degrees  that they are & 100 cegrees relative to straight front. This

geometry ensures a good match to the true interaural time difference for nea-frontal sources

[23].

Since the two loudspeekers are placel symmetricdly in front of the listener, the transfer
function from the left loudspedker to the left ea is the same & the transfer function from the
right loudspedker to the right ea. This dired path is denoted by Ci(2). The symmetry of the
geometry causes the transfer function from the left loudspeeker to the right ea to be the same
as the transfer function from the right loudspe&ker to the left ea, and this crosstak path is
denoted by Cy(2). Thus, the matrix C(2) of plant transfer functions is a symmetric two-by-two

matrix with C,(2) on the diagonal, and,(2) off the diagonal,

@ G@U

€D coh

(19)

Fig. 6 shows the impulse resporses of @) Cy(2), and b C,(2) for a sampling frequency fs of

44.11Hz. Since we do nd have dired accessto a time domain expresson for the scatered

15
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field, the simulated time resporses are cdculated by an inverse Fourier transform of the
sampled frequency resporse (see [23] for details). The frequency resporses have been
windowved in order to ensure that the time resporses are of relatively short duration. The
windowing in the frequency domain is equivalent to convdution with a so-cadled dgita
Hanning pulse given by the time sequence {0, 0.5, 1, 0.5, 0}.Thus, C(2) and Cx(2) are
esentialy low-pass filtered versions of the true transfer functions, and this must be
compensated for by also setting the diagonal elements of the target matrix A(z) equal to the
Hanning pulse. Note that Cy(2) and C,(2) are quite similar because the two loudspeeers are

very close together.

When C(2) and A(2) are symmetric, H(2) is also symmetric, and just as C(2) (seeEqg. 19 itis

made up of only two different elemenitt,(z) on the diagonal and,(2) off the diagonal,

M@ H@O

"O=01,0 HEF

(20)

Fig. 7 shows the magnitude resporse of a) [Hi(2)| and b [H2(2)| cdculated with frequency-
dependent regularisation (dashed lines) and with no regularisation (solid lines). The shape
fador B(2) contains 32 coefficients, and it is a “gradual” high-passfilter whose magnitude
resporse increases from zero to ore & the frequency increases from 0.3fnyg to 0.4y The
gain fador B is0.2.1t is e that the regularisation hes taken out the peak just below 0.6y
(*12kHz), and that the resporse & high frequencies rolls of gently withou causing a brick-
wall type of low-passfiltering. Note that even though the magnitude resporses of Hy(z) and

H(2) are very similar, their phase responses are completely diffeGnt

As e from Fig. 7,the aosstak cancdlation retwork requires avery powerful boost of the

16
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frequencies nea DC in order to work properly. The reason why this boast is required is not
that the two HRTFs C,(2) and C,(2) do nd contain any significant energy at low frequencies,
but rather it is because of the way the dements of C(2) interad (see Sedion IV.C). Since
C1(2) and Cy(2) are very similar at low frequencies, the two-by-two matrix C(2) will contain
four aimost identicd numbers, and this cleally makes C(2) difficult to invert. It isimportant to
redisethat thisisnot an artifad produced by a particular mathematicd model; efficient cross

talk cancellation is inherently difficult at low frequencies.

Fig. 8 shows the two dfferent impulse resporses, a) Hi(2) and b Hx(2), that are necessary in
order to implement a aosstalk cancdlation retwork of the type shown in Fig. 6. Theimpulse
resporses correspondto the magnitude resporses shown with the dashed line in Fig. 7, and
they are cdculated by the fast deconvdution method. It is sen that when the filters are long
enough (N, = 10249, the wrap-aroundeffed is not a problem despite the very powerful 1ow-

frequency boost that characterizes Héitr) andHa(2).

VII. DETERMINING THE REGULARIZATION GAIN- AND SHAPE

FACTORS

Sincethe purpose of the regularizationis to impose asubjedive nstraint on the solution, it
is very difficult to come up with areliable bladk box routine that can set the gain fador 3 and
the shape fador B(z) smultaneously. For audio-related problems, though, the generic function
shown in Fig. 9 dten works very well. As afunction d frequency, the magnitude |B| of B(2)
has a low-frequency asymptotic value B, and a high-frequency asymptotic value By. In the
mid-frequency region, [B| is ore. B. and By are usually much greder than ore. The

frequencies f_ 1, 2, fu1, and fy, define the two transition bands. When the sampling frequency
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is high, 44.1Hz for example, it is Imetimes advantegeous to design |B| on a doulde-
logarithmic scde sincethis is a good approximation to the way the ea perceives und.For a
sampling frequency of 44.1KHz, a suitable set of values for a loudspeaker equalization
problem might be B_ =100, By =100, f;=40Hz, f,=100Hz, fy;=12kHz, and
fu1 = 16kHz. Once B(2) is known, there ae plenty of methods one can use to determine 3
automaticdly. Sincethe main uncesirable feaure of the solutionislikely to be sharp pegsin
the magnitude resporse, ore can try to adjust  such that a cetain maximum value is not
excealed, o such that the pe&k-to-rms ratio is well-behaved within certain frequency bands.

It is up to the user to specify a criterion that is appropriate for the application at hand.

VIIl. CONCLUSIONS

The computational complexity of the fast deconvdution methodis esentialy that of the Fast
Fourier Transform which isan O(N log N) agorithm where N is the number of coefficientsin
the optimal filters [27]. The method is easy to implement, numericaly robust, and since the
optimal respores at different frequencies are independent of ead cther it is passble to speed

up the calculation even further by parallel execution.

The longest time @nstant of the optimal filters can be estimated by mapping out the zeros of
the determinant of a matrix of z-transforms. Those zeros become the poles of amatrix of ided
optimal filters, and if any of thase pales are too close to the unit circle, it can cause awrap-
aroundeffed that corrupts the time resporse of the optimal filters. In order to avoid this, the
optimal filters can be made longer, or alternatively their effedive duration can be reduced by

using regularisation.

The regularisation gain fador § and shape fador B(z) are most reliably determined by trial-
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and-error experiments. It is possble to design badk box routines that work well in most

cases, but there is always an element of danger in using them.

Finaly, it is worth mentioning that it is draightforward to relax the constraints on the target

matrix A(2), the shape fador B(z), and the plant transfer functions C(z) so that they can have

infinite impulse resporses as long as the optimal filters H(2) still have finite impulse

resporses. For example, if B(2) is written Brr(2)/Byr(2), foma manipulations of the z

transforms gill alow the optimal filters to be written in fradional form so that the pole-zero

analysis and the fast deconvolution method can be applied.
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FIGURE CAPTIONS

Fig. 1 The discrete-time deconvolution problem in block diagram form

Fig. 2 The properties of the sequence c(n) whase z-transform is C(2)=1-0.96". a) The zeros
of C(2) inthe cmplex plane, and b) its magnitude resporse |C|. Fig. 2aisesentialy a

close-up of a thin strip that covers the unit circle

Fig. 3 The positions of the paes (crosses) and zeros (circles) in the wmplex plane of the
ided inverse H(2) of C(z) whaose properties are shown in Fig. 2. H(2) is cdculated with

a) frequency-independent regularisation, and b) frequency-dependent regularisation

Fig. 4 The magnitude resporse |H| correspondng to the poe-zero maps plotted in Fig. 3.
H(2) is cdculated with @) frequency-independent regularisation, and b frequency-
dependent regularisation. For reference, the dashed lines show [H| caculated with no

regularisation

Fig. 5 The design o a aosstak cancdlation retwork for the “stereo dpole” is an example

of a multi-channel deconvolution problem

Fig. 6 Theimpulse resporses of @) the dired path C; and b) the aosstak path C, as defined
in Fig. 6 when the listener's heal is modeled as a rigid sphere, and the sampling

frequency is 44.1kHz
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Fig. 7 The magnitude resporses a) |H;| and b |H,| of the two filters Hy(2) and Ha(2)
necessary for implementing the aosstalk cancdlation retwork shown in Fig. 6. The
two frequency resporses are cdculated with frequency-dependent regularisation (solid

lines) and no regularisation (dashed lines)

Fig. 8 The impulse resporses of the two filters whose magnitude resporses are shown with
the dashed line in Fig. 7 cdculated by the fast deconvdution method. Note that [ow-
frequency boost required by the adosstalk cancdlation retwork makes it necessry to

use long filters N, = 1024) n order to prevent the wrap-around effect

Fig. 9 A suggested magnitude resporse function for the shape fador |B| that often works well
with audio-related deconvdution poblems. When the sampling frequency is high, it
IS metimes advantegeous to define |B| to be piecavise linead on a doulde

logarithmic scale
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