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ABSTRACT

Present order tracking methods for solving noise
and vibration problems are reviewed, both FFT and re-
sampling based order tracking methods.  The time
variant discrete Fourier transform (TVDFT) is developed
as an alternative order tracking method.  This method
contains many advantages which the current order
tracking methods do not possess.  This method has the
advantage of being very computationally efficient as well
as the ability to minimize leakage errors.  The basic
TVDFT method may also be extended to a more
complex method through the use of an orthogonality
compensation matrix (OCM) which can separate closely
spaced orders as well as separate the contributions of
crossing orders.  The basic TVDFT is a combination of
the FFT and the re-sampling based methods.  This
method can be formulated in several different manners,
one of which will give results matching the re-sampling
based methods very closely.  Both analytical and
experimental data are used to establish the behavioral
characteristics of this new method.

INTRODUCTION

Traditionally two basic methods have been
employed to digitally track orders which result from
rotating components in noise and vibration problems.
These two basic methods are the FFT based methods
and the re-sampling based methods.

Recently, a Kalman filtering based method has
been introduced to track orders in noise and vibration
data.  This Kalman filtering based method is not
presented in this paper because it is a very different
approach to estimating the amplitude and phase of
orders.  This filtering approach does have many
advantages which the two traditional digital methods do
not, however, it also has several disadvantages such as
the determination of the harmonic confidence factor, and
computational load and complexity [ref. 1].

A new method which is presented in this paper
is a method which, like the FFT, is based on acquiring
constant delta-t spaced time data.  This approach
however, also makes use of angular position information
similar to the re-sampling based methods.  The method
requires a very accurate tachometer signal, as do all of
the order tracking methods.

The time variant discrete Fourier transform
(TVDFT) method which is presented is based upon a
discrete Fourier transform which has a kernel whose
frequency is not constant.  The frequency of this kernel
varies with the frequency of the order of interest.  The
bandwidth of this technique may be either a constant
frequency or a constant order width.

Through a post-processing calculation with an
orthogonality compensation matrix (OCM), the TVDFT
may be extended to separate contributions of closely
spaced or crossing orders.  This analysis is not possible
using either an FFT technique or a re-sampling based
technique.  The limitations of the orthogonality
compensation matrix are discussed and are currently a
topic of further research.

ORDER TRACKING THEORY

FAST FOURIER TRANSFORM BASED ORDER
TRACKING - Fast Fourier transform (FFT) based order
tracking techniques are probably the most commonly
used order tracking methods.  These methods are all
based upon the FFT and require time domain data
sampled with a constant delta-t.  These methods require
an accurate tachometer signal to allow the computation
of the exact frequency which the order of interest
possesses at each instant in time.

FFT techniques follow Shannon’s sampling
theorem [ref. 2].  This theorem states the basic
relationships between the sampling rate of the data and
the frequency range over which the FFT is performed.



The number of time points and the time spacing between
points which are used in the transform determine the
delta-f frequency resolution of the FFT.  These sampling
criteria are presented in Equation 1.
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where: ∆f is the frequency resolution of the resulting
frequency spectrum.

T is the total sample time which is analyzed.
N is the total number of time points over  which

the transform is performed.
∆t is the time spacing of the time samples.
Fsample is the sample frequency of the data.
Fnyquist is the Nyquist frequency.
Fmax is the maximum frequency which can be

analyzed.

The commercially implemented FFT based
techniques all require that N  be a power of 2 for
computational efficiency.  These techniques use the
transform which is given in Equation 2.
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where: fn is the frequency which is being analyzed.
an is the Fourier coefficient of the cosine term

for fn.
bn is the Fourier coefficient of the sine term for

fn.

To minimize the effect of leakage on the
transform results, a window is applied which forces the
analyzed signal to possess a zero slope at both the start
and end of the time block.  The window which is chosen
in this process has a significant effect on the final result.
The Hanning or Flattop windows are typically chosen.
Unfortunately, all windows which may be applied to the
data to reduce leakage have amplitude/frequency
resolution tradeoffs.

The Hanning window has its first zero at two
delta-f’s from the frequency being analyzed and a
second lobe height of approximately -31.47 dB.  This

window provides fairly accurate amplitude information as
well as fairly good frequency resolution.  The second
lobe height of -31.47 dB does allow some energy from
adjacent frequencies to “leak” into the analyzed
frequency bin.

The Flattop window has its first zero at four
delta-f’s from the frequency being analyzed and a
second lobe height of -93.3 dB.  This window provides a
very accurate amplitude estimate even if the order is not
perfectly periodic in the sample window.  The
disadvantage of this window is the loss of frequency
resolution due to its four delta-f frequency width.  This
large frequency width makes it difficult to separate
closely spaced orders, especially at low rpm values
where the orders are not well separated in frequency.

Once a window is selected, the orders of interest
are estimated by performing windowed FFTs on the
response signal.  Oftentimes, overlap processing is used
to give an estimate of the amplitude and phase of the
order at more rpm values than would otherwise be
possible.  The tachometer signal is processed to
determine which frequency lines of the FFT correspond
to the order of interest.  Since the specific order of
interest may not fall on a spectral line at every instant in
time and its frequency may be changing, multiple
spectral lines are summed to give an estimate of the
order.  If a constant frequency bandwidth estimate is
desired, the same number of spectral lines are summed
for every rpm.  If a constant order bandwidth  is desired,
a different number of spectral lines is summed for each
rpm.  More spectral lines are summed at higher rpm
values to attain a bandwidth which is proportional to the
frequency of the primary order.  The rpm assigned to the
order estimate is the average rpm over the time period of
the FFT.

The phase of the order estimate is calculated by
performing exactly the same analysis on the tachometer
data as is performed on the response data.  The phase
of the tachometer estimate is then subtracted from the
phase of the order estimate to lock the phase of the
order estimate to the tachometer signal.

Since the FFTs performed on the data are of a
constant number of time points at each instant in time,
the order estimate is generally more accurate at lower
rpm values for lower orders [ref. 3].  The higher
rpm/order estimates are less accurate because as the
rpm of the machine increases, the frequency of a
specific order changes more rapidly.  This causes the
energy of an order to be spread over more spectral lines
in the total sample time of the FFT.  This would suggest
that a constant order bandwidth should be used to
analyze orders using an FFT technique, as this would
provide an estimate which is summed over more
spectral lines as the rpm increases.



Errors are also introduced because as the
frequency of the orders changes rapidly, the amplitude
of the orders is also likely to change more rapidly.  The
order amplitude changes rapidly as the orders approach,
excite, and move away from the frequency of a
resonance.  This phenomena would suggest that as the
rpm increases, a shorter time block should be analyzed
in a transform. This shorter analysis time is less likely to
have a resonance being excited and decaying in the
same data block.  The analysis of a resonance being
excited and decaying significantly in a data block leads
to an underestimate in the amplitude of the order.  This
is due to the fact that the amplitude of the FFT result is
the average amplitude of the signal over the total sample
time, as shown in Equation 2.  This phenomena also
suggests that more accurate order estimates will be
obtained if the rate of change of the rpm is slow, i.e., a
slow sweep rate is suggested for FFT based techniques.

Due to the two primary errors discussed here, it
can be easily seen that in many instances an FFT
approach to order tracking is not as accurate as would
be desired.  These limitations led to the development of
the re-sampling order tracking techniques.

RE-SAMPLING BASED ORDER TRACKING -
Re-sampling based order tracking methods are digital
order tracking methods which are much more
computationally intensive than the FFT based order
tracking methods.  The re-sampling based order tracking
methods do, however, overcome many of the limitations
of the FFT based methods [ref. 4].

Re-sampling based order tracking methods re-
sample constant delta-t sampled data to constant
angular intervals [ref. 5].  This process is accomplished
through the use of over-sampling, or sampling faster
than required by Shannon’s sampling theorem, the
constant delta-t sampled data.  This over-sampled data
is then re-sampled to equal angular intervals using an
interpolation algorithm.  The times at which the equal
angular intervals occur are computed by integrating the
tachometer signal.  The re-sampled data is now in the
angle domain, as opposed to the original time domain.
This process can be accomplished in near real time on
special hardware acquisition systems, and can also be
accomplished through post-processing.  Both re-
sampling implementations are very computationally
intensive, which may limit the number of orders and/or
channels which can practically be analyzed in either
post-processing or in the acquisition system in near real
time.

The angle domain data is processed through the
use of FFTs or through the use of a discrete Fourier
transform.  The resulting spectral lines which
represented constant frequencies when the transforms
were performed on time data are now constant orders
since the transforms are performed on angle domain
data.  This implies that there are equivalent sampling

relationships in the angle/order domain to the
time/frequency relationships given in Equation 1.  These
equivalent sampling relationships are given in Equation
3.
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where: ∆o is the order spacing of the resulting order
spectrum.

R is the total number of revolutions which are
analyzed.

N is the total number of time points over  which
the transform is performed.

∆θ is the angular spacing of the re-sampled
samples.

Osample is the angular sample rate at which the
data is sampled.

Onyquist is the Nyquist order.
Omax is the maximum order which can be

analyzed.

These sampling rules imply requirements very
similar to the sampling requirements of the time domain
FFT analysis.  The order resolution, ∆o, is the inverse of
the number of revolutions being analyzed.  This implies
that for fine order resolution the analysis must be
performed over many revolutions.  The maximum order
which can be analyzed is determined by the number of
samples per revolution, or the angular sampling rate.
The transforms performed on the angle domain data are
shown in Equation 4.
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where: on is the order which is being analyzed.
an is the Fourier coefficient of the cosine term

for on.
bn is the Fourier coefficient of the sine term for

on.

Leakage may also be a problem with this re-
sampled data.  Since the re-sampled data should be
periodic in the analysis window, no leakage is present
due to non-periodicity.  Oftentimes the leakage error
which is introduced is due to the roll-off of the side-
bands of the window applied to the data.  If the roll-off is



not steep enough, energy from orders adjacent to the
order being tracked will “leak” into the order line of
interest.  The windows which may be used are the same
as for the FFT analyses.

To reduce leakage, the order resolution, ∆o,
should be chosen such that the order of interest falls on
an order line.  This implies that to separate closely
spaced orders from one another, the analysis must be
performed over many revolutions.  For a constant order
resolution, there are a constant number of revolutions
analyzed for each instant in time, implying that as the
rpm increases, a shorter time interval is analyzed.  This
is equivalent to a larger delta-f in the frequency domain.

Analyzing the re-sampled data in this manner
has the advantage of performing the transform over a
shorter time as the rpm increases.  This property helps
to reduce the errors in the order estimate due to the
resonance excitation described above.

Obviously, re-sampling based order tracking
results in better estimates of the amplitude and phase of
an order than the FFT based types of analysis.
However, the re-sampling based method is much more
computationally intensive than the FFT based
techniques and may require special hardware to perform
the analysis in near real time.

It was desired to develop a new order tracking
method which had many of the desirable properties of
the re-sampling based order tracking and at the same
time to overcome the computational load of these
methods.  A method which demonstrates these
properties is the time variant discrete Fourier transform.

TIME VARIANT DISCRETE FOURIER
TRANSFORM ORDER TRACKING - The time variant
discrete Fourier transform (TVDFT) method of order
tracking is a special case of the chirp-z transform.  The
chirp-z transform is defined as a type of Fourier
transform with a kernel whose frequency and damping
vary as a function of time [ref. 6].  The TVDFT is defined
as a discrete Fourier transform whose kernel varies as a
function of time defined by the rpm of the machine, but
the damping does not vary as a function of time.  The
TVDFT has many of the advantages of the re-sampling
based order tracking methods, while reducing the
computational load of the calculations considerably [ref.
7].

The TVDFT method is based on constant delta-t
sampled data.  Therefore, Shannon’s sampling theorem
which was presented in Equation 1 is valid.  However,
since the kernel of the transform is varying in frequency
as a function of the rpm, the sampling theorems
presented in Equation 3 are also applicable, as will be
described below.

The TVDFT is based on the transforms shown in
Equation 5.  It should be noted that the kernel of this
transform appears as a portion of the structure equation
used in the order tracking Kalman filter [ref. 8].  This
kernel is a cosine or sine function of unity amplitude with
an instantaneous frequency matching that of the tracked
order at each instant in time.  This kernel may also be
formulated in a complex exponential format similar to the
corresponding Fourier transform.
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where: on is the order which is being analyzed.
an is the Fourier coefficient of the cosine term

for on.
bn is the Fourier coefficient of the sine term for

on.
rpm  is the instantaneous rpm of the machine.

This transform is best suited to estimate an
order with a constant order bandwidth.  This constant
order bandwidth estimate is obtained by integrating the
instantaneous rpm of the machine to obtain the number
of revolutions the shaft has rotated through at each
instant in time, as was done in the re-sampling process.
A constant order bandwidth estimate may be obtained
by performing the transform over the number of time
points required to achieve the desired order resolution,
as defined by Equation 3.  This implies that as the rpm
increases, the transform will be applied over a shorter
time, giving a wider delta-f.  This behavior was also
exhibited by the re-sampling methods and was
determined to be advantageous for order tracking.  This
transform is normally only performed for the orders
which are desired and not for a full spectrum as was
done in the previously described order tracking methods.
Two relationships which are applied with the sampling
theorem established in Equation 3 are given in Equation
6.  These relationships are necessary to minimize
leakage effects in this type of analysis.
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The relationships in Equation 6 impose
restrictions on the actual order bandwidth which may be
applied in the application of the TVDFT.  The second of
these relationships further imposes a restriction on which
orders may be tracked with minimal leakage errors using
the TVDFT.  It should be noted, however, that even with



these restrictions, the user may track most orders which
are typically of interest in many applications.

Since the frequency of the kernel of this
transform matches the frequency of the order of interest
at each instant in time, there is no leakage due to the
order not falling on a spectral line.  There will, however,
be leakage effects from other orders which are present
in the data.  These orders can “leak” into the frequency
band of analysis around the order.  Any of the windows
used for conventional FFT analyses can also be used for
this transform.  Since all windows have a frequency
resolution/amplitude estimate tradeoff, the window
chosen can have a significant effect on the results.
Which window to use depends on the order content of
the data and the aspects of the order estimate the user
feels are most important.

There can be a leakage error using this
transform with constant delta-t sampled data because it
is not guaranteed that the integer revolution values
required for a constant order bandwidth analysis will fall
on a delta-t.  If the integer revolution value does not fall
on a delta-t, the transform is performed over a non-
integer number of cycles, leading to a leakage error.
This error is due to the transform kernel of other orders,
which fall on delta order lines, not being exactly
orthogonal with the order line being analyzed.  The
magnitude of this error is a function of the number of
cycles over which the data is analyzed.  This error can
be corrected through the use of an orthogonality
compensation matrix, as described in the next section of
this paper.  In most cases, this error will be minimal and
can be neglected for trouble shooting.

A second method of reducing this error is over-
sampling the data, which provides a finer delta-t.  This
allows the method to analyze sections of data which are
closer to having an integer number of revolutions than
were possible with lower sampling rates.  This over-
sampling can be performed when the data is acquired,
or as a post processing phase of the data analysis using
an up-sampling interpolation filter.  This type of up-
sampling is much less computationally demanding than
the re-sampling procedure because it is not necessary to
upsample by a large amount to improve accuracy.

The TVDFT transform can also be applied to
obtain order estimates with a constant frequency
bandwidth.  These estimates are more susceptible to the
leakage error described above at low rpm values where
the orders are not well separated.  The constant
frequency formulation has the same practical problem of
the FFT methods.  They both analyze the same length of
time for all rpm values, regardless of the rate of change
of the frequency of the order.  The TVDFT estimate,
however, will not be smeared across multiple spectral
lines and should be more accurate than an FFT method.

The TVDFT order tracking method presented
here is a very practical order tracking method which can
be implemented in a very efficient manner on a
computer.  This method contains many of the
advantages of the re-sampling based algorithms without
much of the computational load and complexity, since
interpolation from the time domain to the angle domain is
not required.  Computational efficiency is gained for
large numbers of channels by computing the transform
kernel once, storing it, then applying it to each channel.
Any window used in the analysis should be applied to
this pre-computed kernel, since the window only has to
be applied once if it is applied to the kernel instead of
once for each channel.  This method also provides better
order estimates than the FFT based methods.

ORTHOGONALITY COMPENSATION MATRIX
- To enhance the capabilities of the TVDFT for tracking
orders and to reduce the errors due to non-orthogonality
of the kernels, an orthogonality compensation matrix
(OCM) may be applied.  The application of the OCM
allows faster sweep rates to be analyzed, as well as
closely spaced and crossing orders to be analyzed more
accurately.  This OCM is applied as a post-processing of
the order estimates from the TVDFT analysis.

To apply the OCM, all orders of interest are first
tracked using the TVDFT with either a constant
frequency or constant order bandwidth.  This tracking
should be done intelligently, as the quality of the
compensation is related to the quality of the original
order estimates.  This implies that the user may want to
apply a Hanning window to increase out of band
rejection.  The bandwidth used may be somewhat wider
than is minimally necessary to separate closely spaced
orders.  The amount of relaxation of the minimum
bandwidth depends on the window used in the analysis.
This relaxation of the bandwidth allows fewer revolutions
to be analyzed at a time if desired, which allows faster
sweep rates to be analyzed.

The application of the OCM is a linear equations
formulation which is shown in Equation 7.
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where: eij is the cross orthogonality contribution of order
i in the estimate of order j.

o  i is the compensated value of order i.
o

i is the estimated value of order i obtained
using the TVDFT.



The cross orthogonality terms, eij, are calculated
by applying the kernel of order i to the kernel of order j,
as shown in Equation 8.
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The window used in the original order estimate
is applied to order i to compensate for any correction
factor which may need to be applied to scale the data
correctly.  It also includes the effects of the shape of the
window in the compensation.  Each term in the matrix
represents the amount that the orders’ kernels interact
with one another in the transform estimation.  If the
orders included in the calculation of the OCM are
orthogonal, the off diagonal terms of this matrix will be
zero, as is the case for the standard Fourier transform
kernels.

The compensated order estimates are obtained
by pre-multiplying both sides of Equation 7 by the
inverse of the OCM.  This results in the solution shown
in Equation 9.
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Since the effects of any orders not included in
this calculation are not compensated, it is recommended
that all significant orders be included in the
compensation calculation.

Very closely coupled orders are normally very
difficult to separate using standard FFT or re-sampling
techniques because the orders may beat with one
another.  The TVDFT without compensation also has
difficulty separating very closely spaced orders,
however, with compensation the TVDFT can separate
the contributions of the orders effectively.  Initially, the
orders should be tracked with a bandwidth which is at its
largest approximately equal to the spacing of the closely
coupled orders.  If the orders are tracked with this
bandwidth using a Hanning window, oftentimes the order
estimates will contain beating of the two orders.  This
beating effect can be removed by applying OCM.

Crossing orders pose a similar problem to that of
closely spaced orders.  Oftentimes, if two orders cross
one another, the order estimates are incorrect at the

crossing rpm due to the interaction of the orders.
Tracking the orders and then applying the OCM allows
the separation of the contributions from each order.

Many of the limitations of the OCM application
are currently under investigation.

APPLICATION EXAMPLES

Several examples are presented to show the
effectiveness of the TVDFT in tracking orders.  The first
of the examples is the straightforward tracking of well
separated orders in an experimental dataset.  It
compares the TVDFT method without OCM
compensation to a re-sampling method.  The second
example which is presented is an analytical example
with a large number of orders present which excite
resonances.  The same methods used in the first
example are compared when the amplitude of the orders
changes rapidly.

The final example presented is a set of
analytical test cases which show the effectiveness of the
TVDFT compensated with the OCM.  This example
includes both very closely spaced orders as well as
crossing orders.

EXPERIMENTAL EXAMPLE - A dataset was
acquired on a sport utility vehicle operating on a chassis
dynamometer.  The vehicle was swept from 50 to 70
mph in high gear with 50 lbs. of tractive effort over a 20
second period.  The response channel was an
accelerometer mounted on the nose of the rear axle
pinion.  The tachometer signal was measured on the
input propshaft.

Order 3.42 of the propshaft was tracked with the
constant frequency and constant order bandwidth
TVDFT and with a re-sampling technique.  The constant
order bandwidth methods used a bandwidth of .05
orders and a Hanning window.  The constant frequency
bandwidth TVDFT used a frequency bandwidth of 2 Hz
with a Hanning window.  The results of tracking the order
with these three methods is shown in Figure 1.
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Figure 1: Comparison of TVDFT order tracking with
re-sampling method.

Figure 1 shows that all three of the methods
agree reasonably well.  The re-sampling method and the
constant order bandwidth TVDFT give almost identical
estimates of the order.  The TVDFT methods are not
compensated with the OCM, demonstrating that in many
cases the TVDFT does not need to be compensated.

ANALYTICAL EXAMPLE WITH RESONANCES
- Analytical data was generated with a fairly large
number of orders, orders 1-8 and orders 5.5 and 6.5.
The rpm in this example ramps from approximately 800
rpm to 4400 rpm in 30 seconds as a squared function of
time.  This type of rpm profile may be typical of data
acquired on a chassis dynamometer.  This dataset
contains 3 resonances to evaluate the performance of
the order tracking methods when the amplitudes of the
orders change very rapidly.  A waterfall plot of this
dataset is shown in Figure 2.

Figure 2: Waterfall plot fast slew rate data.

As can be seen in Figure 2, the orders are very
close together at low rpm values.  The amplitudes of the
orders also appear to change very rapidly as the orders

cross through a resonant frequency.  Both of these
phenomena can pose problems when tracking orders.
Figure 3 shows this same dataset after it has been re-
sampled from the time domain to the angle domain.  It
can clearly be seen in this figure that the orders have
been straightened out and now fall on spectral lines.
Note how the resonances do not fall on a spectral line in
the angle/order domain.

Figure 3: Waterfall plot of re-sampled angle/order
domain data.

The order estimates of order 5.5 are shown in
Figure 4.  It can be seen in this figure that the three
order tracking methods used, the TVDFT frequency and
order bandwidth and the re-sampled method, all agree
very well except at the resonances.  The differences in
the estimates at the resonances are due to the fact that
the amplitude of the order changes very rapidly at this
point.  As was pointed out earlier in this paper, all of the
Fourier transform methods estimate the average
amplitude of a signal over the total sample time.  This
property results in a larger estimate of the low frequency
resonance by the TVDFT frequency bandwidth method
than was obtained by either of the other two methods,
due to the fact that it is averaging over a shorter time at
the low rpm values.  The TVDFT order bandwidth and
the re-sampling methods both result in a higher
amplitude estimate at the high frequency resonance
because they are averaging over a shorter time at the
high rpm values.  This example clearly shows the
time/frequency tradeoff which the different methods
exhibit.  Note that the TVDFT order bandwidth and the
re-sampling method give nearly identical order
estimates.
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Figure 4: Order estimates of order 5.5.

ANALYTICAL EXAMPLE WITH OCM - An
analytical dataset was generated with both closely
spaced and crossing orders.  This dataset contains
orders 3 and 3.1 which would be typical of a drive axle
gearset.  This dataset also has constant frequency
orders which would be consistent with an electric fan in
an automobile.  The rpm was swept from approximately
900 rpm to 4500 rpm in a period of 16 seconds.  This is
a common sweep rate for a vehicle on the road.  The
orders of the sweeping shaft as well as the orders of the
constant frequency shaft were tracked both with and
without OCM compensation.  A Hanning window was
used with a constant order bandwidth of .05 as defined
by the sweeping frequency shaft.  This implies that the 3
and 3.1 orders should be barely separable with the
TVDFT method without OCM compensation.

A waterfall plot of the data is shown in Figure 5.
Note that the closely spaced orders cannot be visually
separated and that all of the sweeping orders interact
with the constant frequency orders at the crossing rpms.

Figure 5: Waterfall plot of dataset with closely
coupled and crossing orders.

All of the orders present were tracked using the
TVDFT constant order bandwidth method without any
compensation and with OCM compensation.  The results
of the order tracking without compensation is shown in
Figure 6.
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Figure 6: TVDFT constant order bandwidth order
estimates without compensation.

Note the inability of the TVDFT to separate
completely the close orders.  The bottom curve is order
3.1 which should be 40 dB below order 3.  The TVDFT
cannot account for any of the interaction between the
crossing orders.  The re-sampling and FFT based
methods would give results similar to these.

The results of the order tracking with
compensation are shown in Figure 7.  Note the ability of
the OCM to separate the close orders and to
compensate for the order crossings almost perfectly for
all orders.  This shows that the compensation effectively
increases the ability of the TVDFT method to both
separate closely spaced orders and to compensate for
interactions between crossing orders simultaneously.
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Figure 7: TVDFT constant order bandwidth estimates
with OCM compensation.

The effectiveness of the OCM compensation is
somewhat determined by how rapidly the amplitude of
the orders change and how much interaction there is
between orders.  This limits the sweep rate which may
be used to process data accurately.  If the same set of
orders is constant in amplitude instead of varying in
amplitude, orders as close as 3 and 3.02 can be
separated perfectly, even if order 3.02 is 60 dB below
order 3 in amplitude.  There is also perfect
compensation for the crossing order interaction.  These
results are shown in Figure 8.
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Figure 8: TVDFT constant order bandwidth estimates
with OCM compensation.

Nearly the same sweeping orders as shown in
Figure 6 were also tracked without the presence of the
crossing orders.  In this case, orders as close as 3 and
3.05 could be separated accurately.  Remember, a
Hanning window with a constant order bandwidth of .05
was used.  This should result in a minimum separation of
close orders of approximately .1 due to the window
shape.  This example thus shows that the ability to

separate close orders with the OCM compensation can
exceed what at first glance seems to be possible.

CONCLUSION

The basic theory and application of the two most
commonly used order tracking methods, FFT and re-
sampling based methods, were presented.  The
limitations of these two methods were discussed and a
basis for the development of a new algorithm
established.

The time variant discrete Fourier transform
(TVDFT) was then developed and its application
discussed.  The basis of the TVDFT was shown to be a
kernel whose frequency matched that of the tracked
order at each instant in time.  The TVDFT was shown to
be applicable for tracking orders with either a constant
frequency or constant order bandwidth.  The TVDFT was
shown to produce results which very closely matched
the re-sampling based methods for a constant order
bandwidth analysis.  The TVDFT method may also be
used to track order or frequency components in pass-by
noise applications where a Doppler shift is present.

The TVDFT was then extended through the
application of an orthogonality compensation matrix
(OCM), which may be applied to improve the accuracy of
order estimates.  The OCM is applicable where the
transform kernels of the tracked orders are not perfectly
orthogonal.  The OCM was also shown to extend the
capabilities of the TVDFT to separate contributions of
closely spaced orders and crossing orders.  This
capability is unmatched by either the FFT or the re-
sampling based methods.  It was shown that the
improvements possible with the OCM compensation
were dependent on the rate of change of the amplitudes
of the orders and the amount of interaction between the
orders.

The limitations of the OCM are a topic of
ongoing research.

REFERENCES

[1] J. Leuridan , H. Vold, G. Kopp, and N. Moshrefi,
"High Resolution Order Tracking Using Kalman
Tracking Filters - Theory and Applications" ,
Proceedings of the SAE Noise and Vibration
Conference, Traverse City, MI., 1995, SAE paper
no. 951332.

[2] J.S. Bendat and A.G. Piersol, “Random Data,
Analysis and Measurement Procedures”, 2nd
Edition, Wiley-Interscience, New York, pp411-417,
1986.

[3] P. Van de Ponseele, H. Van der Auweraer, and M.
Mergeay, “A Global Approach to the Acquisition and



Analysis of Harmonic Waveforms”, Proceedings of
International Modal Analysis Conference 7, Las
Vegas, NV., pp.1290-1299, 1989.

[4] R. Potter and M. Gribler, “Computed Order Tracking
Obsoletes Older Methods”, Proceedings of the SAE
Noise and Vibration Conference, Traverse City, MI.,
1989, SAE paper no. 891131.

[5] P. Van de Ponseele, H. Van der Auweraer, and M.
Mergeay, “Performance Evaluation of Advanced
Signature Analysis Techniques”, Proceedings of
International Modal Analysis Conference 7, Las
Vegas, NV., pp.154-158, 1989.

[6] L. Rabiner and B. Gold, “Theory and Application of
Digital Signal Processing”, Prentice Hall
International, London, pp.390-399, 1975.

[7] J.R. Blough, D.L. Brown, and H. Vold, “Order
Tracking with the Time Variant Discrete Fourier
Transform”, Proceedings of the International
Seminar of Modal Analysis - 21, Leuven, Belgium,
1996.

[8] H. Vold and J. Leuridan, "High Resolution Order
Tracking at Extreme Slew Rates, Using Kalman
Tracking Filters", Proceedings of the SAE Noise and
Vibration Conference, Traverse City, MI., 1993, SAE
paper no. 931288.


