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This article presents the filter characteristics of the Vold-
Kalman Order Tracking Filter. Both frequency response as
well as time response and their time-frequency relationship
have been investigated. Some guidelines for optimum choice
of filter parameters are presented. The Vold-Kalman filter al-
lows for the high performance simultaneous tracking of orders
in systems with multiple independent shafts. Using this new
filter with multiple tacho references, waveforms as well as am-
plitude and phase may be extracted without the beating inter-
actions that are associated with conventional methods. The
Vold-Kalman filter provides several filter shapes for optimum
resolution and stopband suppression. Orders extracted as
waveforms have no phase bias and may hence be used for
playback, synthesis and tailoring.

In 1993 Vold and Leuridan1 introduced an algorithm for high
resolution, slew rate independent order tracking based on the
concepts of Kalman filters.8,9 The algorithm has been success-
fully implemented in a commercial software system for solv-
ing data analysis problems previously intractable with other
analysis methods. At the same time, certain deficiencies have
surfaced, prompting the development of an improved formu-
lation. In particular, the capability of being able to control the
frequency and the time response of the filter and to separate
close and crossing orders has been implemented.3 This article
presents an introduction to the new Vold-Kalman algorithm,
presents the frequency response and the time response of the
filters and their time-frequency relationship and gives some ex-
amples of their applications using PULSE, the Brüel & Kjær,
Multi-Analyzer System Type 3560.4

Order tracking is the art and science of extracting the sinu-
soidal content of measurements from acousto-mechanical sys-
tems under periodic loading. Order tracking is used for trouble-
shooting, design and synthesis.5 Each periodic loading
produces sinusoidal overtones, or orders/harmonics, at fre-
quencies that are multiples of the fundamental frequency
(RPM). The orders may be regarded as amplitude and phase
modulated carrier waves that frequency hop. Many practical
systems have multiple shafts that may run coherently through
fixed transmissions, or are partially related through belt slip-
page and control loops, or run independently, such as when a
cooling fan cycles in an engine compartment. The Vold-Kalman
algorithm allows for the simultaneous estimation of multiple
orders, effectively decoupling close and crossing orders. This
is especially important for acoustical applications, where or-
der crossings cause transient beating events. The new algorithm
allows for a much wider range of filter shapes, so that signals
with sideband modulations are processed with high fidelity.
Finally, systems subject to radical RPM changes, such as trans-
missions, are also tracked through the transient events associ-
ated with abrupt changes in inertia and boundary conditions.
The goal of order tracking is to extract selected orders in terms
of amplitude and phase, called the Phase Assigned Orders, or
as waveforms. The order functions are extracted without phase
error and may hence be used in synthesis applications for
sound quality and laboratory simulations.

Vold-Kalman Filter
The basic idea behind the Vold-Kalman filter is to define

local constraints which state that the unknown Phase Assigned
Orders are smooth and that the sum of the orders should ap-
proximate the total measured signal. The smoothness condi-
tion is called the structural equation, and the relationship with
the measured data is called the data equation.

Structural Equation. The Phase Assigned Order is the low
frequency modulation of the carrier wave, which is RPM re-
lated. Low frequencies entail smoothness and one sufficient
condition for smoothness is that the local function can be rep-
resented by a low order polynomial.

Data Equation. The structural equation only enforces the
smoothness conditions on the estimates of the phase assigned
orders such that we need an equation that relates estimates to
the measured data. The Data Equation states that the sum of
orders differs from the total signal by only an error term.

Decoupling. When several orders are estimated simulta-
neously, the data equation ensures that the total signal energy
will be distributed between these orders. With the smoothness
conditions of the structural equation, this forces a decoupling
of close and crossing orders. The mathematics of this proce-
dure is analogous to the repeated root problem in modal analy-
sis.7 When orders are coincident in frequency over an extended
time segment, the allocation of energy to such orders is poorly
defined and numerical ill-conditioning may ensue. Widening
the filter bandwidth is one possible remedy in this case.

Vold-Kalman Filter Process, Step by Step Example
To illustrate the ease of use of the Vold-Kalman filter pro-

cess as implemented in the Brüel & Kjær PULSE, Multi-analy-
sis System Type 3560, a run-up measurement on a small single
shaft electrical motor has been performed. Figure 1 shows the
vibration response signal which was recorded together with a
tacho signal. A 1.6 kHz frequency range and a total recording
time of 20 sec have been selected using a PULSE Time Capture
Analyzer. The number of samples recorded is 81,920 in each
channel; 18 sec of the recorded signal was extracted for Vold-
Kalman tracking using a delta cursor.

Overview Using Fourier Analysis. The first step is to use
conventional techniques in order to gain some insight of the
harmonic orders of interest, gearshifts, etc. Figure 2 shows a
contour plot of an STFT (Short Time Fourier Transform) of the
vibration signal. The record length for each transform is set to
125 msec (512 samples) resulting in 200 lines in the frequency
domain (linespacing ∆f of 8 Hz). An overlap of 66% is used
resulting in a multi-buffer of 500 spectra covering the selected
18 sec. From the contour plot it is revealed that the dominat-
ing orders are numbers 1, 3, 9 and 10 and as expected, no gear-
shift is present.

Tacho Processing. Any high resolution method needs proper
controls. For the Vold-Kalman filter, this means a very accu-
rate estimate of the instantaneous RPM such that the tracking
filter will follow orders correctly. The method that has been
chosen is that of fitting cubic splines in a least-squares sense
to the table of level crossings from a tacho waveform. Figure 3
shows a superimposed graph of the measured and the curve
fitted RPM profiles. The maximum slew rate in this case is seen
to be approximately 800 RPM/sec and the range is between
1000 and 6000 RPM.

The spline fit also allows for an automatic rejection of out-
lying data points (such as tacho dropouts) with a subsequent
refit on an edited table of level crossings. Note also that this
procedure allows for an analytic expression of RPM as a con-
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tinuous function of time with true tracking of the shaft rota-
tion angle for phasing fidelity. There is also the option of speci-
fying hinge points in the spline fit such that sudden changes
in inertial properties can be tracked, as in the case of clutch-
ing and gearshifts.

Vold-Kalman Filtering. Orders can now be extracted from the
signal in terms of waveforms or as Phase Assigned Orders.
Figure 4 shows the waveform of the 3rd order extracted using
a two-pole Vold-Kalman filter with a bandwidth of 10% (i.e.,
10% of the fundamental frequency). Extracted waveforms can
be played via a soundboard and they can be exported as a wave-
file. Sound Quality measurement is an example where this is
very useful.

Extracted as Phase Assigned Orders means that the orders
are determined in terms of magnitude and phase. Figure 5
shows the magnitude of the Phase Assigned Orders of the 1st,
3rd, 9th and 10th orders, which were the 4 most dominating
orders. A two-pole Vold-Kalman filter with a bandwidth of 10%
was used.

Filter Characteristics in Frequency and Time Domain
Bandwidth selection is done in terms of constant frequency

bandwidth or proportional to RPM bandwidth (i.e., constant
percentage bandwidth). The bandwidth specification is in the
Brüel & Kjær Vold-Kalman implementation in terms of the half
power points, i.e., 3 dB bandwidth. The proportional to RPM
bandwidth is recommended for analysis of higher harmonic
orders or analysis of wide RPM ranges. The filter shape is mea-
sured by sweeping a sinewave through a Vold-Kalman filter
with a fixed center frequency and fixed bandwidth. A sweep
rate of 1 Hz/sec is used for measuring the filter shapes, shown
in Figure 6, of a Vold-Kalman filter with a center frequency of
100 Hz and a bandwidth of 8 Hz. The x-axis, which is a time
axis scaled in sec, can be directly interpreted as a frequency
axis scaled in Hz (with a fixed offset). It is seen that a one-pole
filter has very poor selectivity, a two-pole filter has a much bet-
ter selectivity, whereas a three-pole filter provides the best
selectivity. The 60 dB shape factor, i.e., the ratio between the
60 dB bandwidth and the 3dB bandwidth is often used for
describing the selectivity of a filter. The 60 dB shape factor has
been measured for the one-, two- and three-pole filter for band-
widths in the range from 0.125 to 16 Hz. These tests showed
that the 60 dB shape factor for a given pole specification is
slightly increasing as a function of bandwidth. The one-pole
filter has a 60 dB shape factor of approximately 50 (variation
from 48.8 to 50.8), the two-pole filter has a 60 dB shape factor
of approximately 7.0 (variation from 6.80 to 7.07) and the three-
pole filter has a 60 dB shape factor of approximately 3.6 (varia-
tion from 3.58 to 3.68), i.e., the three-pole filter has a 2 times
better selectivity than the two pole filter and a 14 times better
selectivity than the one-pole filter.

Another characteristic of the filter is the frequency response
within the passband. As seen in Figure 7 the two- and three-
pole filters have a much flatter frequency response in the pass-
band compared to the one-pole filter and the three-pole filter
has the flattest frequency response. The flatness of the fre-
quency response in the passband is important when analyzing
the amplitude and phase modulation of the harmonic carrier
frequency. Amplitude and phase modulation correspond in the
frequency domain to sidebands centered around the harmonic
carrier frequency component. This means that the flatter the
frequency response the more correct the modulation will show
in the filter analysis.

The time response of Vold-Kalman filters is important to
understand when analyzing transient phenomena and re-
sponses to lightly damped resonances which have been excited
during a run-up or a run-down. The time response has been
investigated by applying a toneburst with a certain duration
to a Vold-Kalman filter with a fixed center frequency corre-
sponding to the frequency of the toneburst. In Figure 8 the mag-
nitude of the response of a filter centered at 100 Hz with a
bandwidth of 8 Hz is shown using a logarithmic y-axis. A 100

Hz toneburst with a duration of 1 sec is applied to the filter.
One very important feature is that the time response is sym-
metrical in time, i.e., it appears to behave like a non-causal fil-
ter. This is because Vold-Kalman filtering is implemented as
post processing allowing for non-causal filter implementation
and extraction of order waveforms with no phase bias, i.e.,
without a time delay. Figure 8 shows the time response for the
one-, two- and three-pole filters with a bandwidth of 8 Hz.

The one-pole filter has, as expected, the shortest decay time
and a decay which appears as a straight line when displayed
with a logarithmic y-axis, while the two-pole and three-pole
filters, in addition to the longer decay times, also show some
lobes. The main lobes of all three filter types show, on the other
hand, nearly the same chracteristic in the upper 25 dB, i.e., the
same “early decay,” which means their behavior in terms of
how fast they can follow amplitude changes of orders is nearly
identical.

Figure 9 shows the time response with a one-pole filter for 3
different choices of filter bandwidth. As expected the decay
time is inversely proportional to the bandwidth. Since the slope
for a one-pole filter is very similar to the slope of the early
decay for two- and three-pole filters with the same bandwidth,
we can extract the following important time-frequency relation-
ship for all three types of Vold-Kalman filters:

where B3dB is the 3 dB bandwidth of the Vold-Kalman filter and
τ is the time it takes for the time response to decay 8.69 dB. If
reverberation time, T60 instead of time constant τ is preferred,
the relation becomes:

When zooming in around the beginning or the end of the
toneburst, a difference between the three filter types is revealed
as seen in Figure 10. The one-pole filter has a smooth decay
before the stop of the toneburst, whereas the two-pole and the
three-pole filters show a ripple with a maximum deviation
(overshoot) from the steady state response of 0.28 dB and 0.46
dB, respectively. This overshoot phenomena is only seen in
analysis results when analyzing signals with abrupt amplitude
changes (such as in the case of a toneburst) or when a too nar-
row filter bandwidth was selected for the analysis (i.e., the time
constant τ of the filter is too long for the signal to be analyzed).

As an additional observation, all time responses have de-
cayed to −6 dB at the location where the tone burst stops, irre-
spective of the chosen filter parameters, see Figure 9. That is
where the energy of the order signal inside the analyzed time
window is reduced by 3 dB. Due to the sudden change in the
nature of the signal, from a sinewave to nothing, a further leak-
age of the order, into neighboring frequencies by 3 dB is seen.
A similar effect is observed using FFT analysis.

Selection of Bandwidth and Filter Type
Selection of the filter bandwidth is basically a compromise

between having a bandwidth which is sufficiently narrow to
separate the various components in the signal and a bandwidth
which is sufficiently wide, giving a short filter response time,
in order to follow the changes in the signal amplitude. The
contour plot of the STFT analysis can be used for evaluating
the separation of the various components. Various research
tests have shown that when orders are going through a reso-
nance, the time constant of the filter τ should be shorter than
1/10 of the time T3dB it takes for the particular order to sweep
through the 3 dB bandwidth of the resonance ∆f3dB. This en-
sures an error of less than 0.5 dB of the peak amplitude at the
resonance using a one-pole filter. For two- and three-pole fil-
ters the error of the measured peak will be less.

For the time constant of the filter we thus have that:

or in terms of the bandwidth of the filter

(1)

(2)

(3)

B T3 60 1 4dB × = .

B3 0 2dB × =τ .

(4)B T3 30 2 2dB dB= ≥. / /τ

τ ≤ ×0 1 3. T dB
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The time it takes for order number k to sweep through the
3dB bandwidth is:

or

where SRHz and SRRPM is the sweep rate in Hz/sec and RPM/
sec, respectively. This means that the bandwidth B3dB of the
Vold-Kalman filter extracting order number k should follow,

or

Example 1.  In the first example a linear sweep of a
squarewave, with a sweep rate of 17,200 RPM/sec from 12,000
to 63,000 RPM (286.7 Hz/sec from 200 to 1050 Hz), going
through a known resonance is analyzed. The resonance fre-
quency is 795 Hz and the 3 dB bandwidth of the resonance is
16 Hz, corresponding to 1% damping. The first three orders are
analyzed. Using Equation (8) we have for the 1st order:

for the 2nd order:

and for the 3rd order:

The Vold-Kalman filter bandwidth can be specified in terms
of a constant frequency bandwidth or proportional to RPM
bandwidth (i.e., constant percentage bandwidth). Proportional
bandwidth is the best choice when analyzing over wide RPM
ranges or when analyzing higher orders. A bandwidth of 35.8
Hz for the 1st order at the resonance frequency of 795 Hz cor-
responds to 4.5% bandwidth. A bandwidth of 71.6 Hz for the
2nd order at 795 Hz corresponds to 18% bandwidth and a band-
width of 107.4 Hz for the 3rd order at 795 Hz corresponds to
40% bandwidth. Figure 11 shows the magnitude of the Phase
Assigned Orders extracted with a two-pole filter with propor-
tional bandwidth of 4.5%, 18% and 40% for the 1st, 2nd and
3rd orders, respectively.

The peak amplitudes measured with one-, two- and three-
pole filters with bandwidths of 4.5 and 18% for the 1st and the
2nd orders, respectively, are given in Table 1. The correct peak
amplitudes were found by widening the filter bandwidth un-
til the amplitude did not increase any more.

The peak amplitude errors for the one-pole filter is thus 0.3
dB and within 0.1 dB for the two- and three-pole filter having
a minimum bandwidth given by Equation (8). A second reso-
nance at 1900 Hz, being excited by the second and the third
order, is also seen in Figure 11.

Using a filter with proper selectivity is very important for
the analysis. This is illustrated in Figure 12, which shows the
result of Vold-Kalman filtering using the one-pole filter instead
of the two-pole filter used in Figure 11. All other analysis pa-
rameters remain unchanged. The limited selectivity of the one-
pole filter causes a lot of interference from the other orders
especially at the positions where these pass through the reso-
nances. The interference is most dominating for the 3rd order
due to the wider bandwidth needed to extract this order. The
interference from the 2nd order can even lead to misinterpre-
tations of “nonexisting” resonances. Decoupling cannot be
used to avoid this kind of interference over a wide time span.
Using the two-pole filter (Figure 11) a small amount of inter-
ference is still seen for the 3rd order in the analysis. The three-
pole filter will completely suppress the interference from the
other orders in this case.

The ripples indicated in Figure 11, on the decaying slope af-
ter the orders have passed the resonance still need some ex-
planation. These ripples are caused by an interaction between

the order component and the free decay of the natural fre-
quency for the lightly damped resonance. This phenomenon
can be investigated by looking at the contour plot of an STFT
analysis. Figure 13 shows a detailed view of the part in the con-
tour plot where the 2nd and 3rd order component excite the first
resonance. A 3200 line analysis, giving a ∆f of 2 Hz, and a step
of 10 msec between the spectra (corresponding to 98% over-
lap), is used. The free decay of the resonance after the point in
time where the orders have “crossed” the resonance frequency
is clearly seen. When the decaying oscillations of the damped
natural frequency are inside the passband of the filter extract-
ing the given order, the beating interference will occur. The
beating is most severe for the third order because of the wider
bandwidth used in the analysis. Since there is no “natural”
tacho signal which relates to the damped natural frequency, it
is not possible to make decoupling of these components. The
only way to get less beating interaction is to use a narrower fil-
ter bandwidth in order to get the free decaying natural fre-
quency more quickly outside the passband bandwidth after the
resonance crossing of the order. This will, however, cause vio-
lation of the requirement for the minimum bandwidth given
by Equations (4), (7) or (8).

Example 2. In this example, a fast run-up of a spin drier is
analyzed. A tacho signal giving 12 pulses per revolution is used
and the vibration response in the tangential, radial and axial
direction is measured. Figure 14 shows the contour plot of the
STFT analysis of the radial response. It is seen that the response
is dominated by the 1st order (unbalance) and the 22nd order
(raised by the 22 winding slots in the electrical motor). Each
Fourier transform is based upon a record length of 250 msec
giving a line spacing ∆f of 4 Hz.

The 1st order is dominated by one resonance. The run-up
takes approximately 6 sec and the curvefitted RPM profile is
shown in Figure 15.

The peak value and the time T3dB it takes for the 1st order to
sweep through the 3 dB bandwidth of the dominating reso-
nance is found by applying a three-pole filter with wide band-
width (up to 100%). Using a bandwidth of more than 100%
gives ripples due to beating interference even with the three-
pole filter. From these analyses T3dB is found to be 464 msec
and the peak of the resonance is found to be 12.6 dB. Using
Equation (4) this means that the minimum bandwidth should
be 4.31 Hz. The peak of the resonance is at 681 RPM (11.3 Hz)
which means that the minimum bandwidth should be 38%.
Using a bandwidth of 38% gives a peak value of 12.2 dB (i.e.,
an error of 0.4 dB). The same peak value is found using one-
pole and two-pole filters. For the one-pole filter with 38%
bandwidth the extracted order is contaminated by ripples (beat-
ing interference), even at the resonance, due to the limited se-
lectivity. Figure 16 shows the 1st order of the radial, tangential
and axial response extracted using a three-pole filter with a
bandwidth of 50%. The same resonance is seen in the axial re-
sponse, whereas the dominating resonance in the tangential
response is at 911 RPM (15.2 Hz). A smaller resonance at 375
RPM (6.25 Hz) is seen in the radial and axial response and at
388 RPM (6.47 Hz) in the tangential response. T3dB for this
resonance is found to be 415 msec for the radial response mean-
ing that the bandwidth should be at least 76%. Using 50%
bandwidth with a three-pole filter gives an underestimation of
about 0.8 dB. A two-pole filter gives a beating interference at
this resonance with bandwidth larger than 50%. Proper mea-
surement of this resonance is not possible with a one-pole fil-
ter due to strong beating interference even for bandwidth as
narrow as 20%. The 22nd order can be extracted using a three-
pole filter with a bandwidth of 60%, which is found to be the
minimum bandwidth for the dominating resonance at 933 RPM
(15.6 Hz) in the radial response. A two-pole filter introduces a
small interference at the resonance with 60% bandwidth. For
a one-pole filter, interference is experienced for bandwidths
wider than 40%.

Crossing Orders

(5)

(6)

(7)

(8)

B3 3 17 200 30 16 107 4dB  Hz  Hz≥ × × =( , ) / ( ) .

B3 2 17 200 30 16 716dB  Hz  Hz≥ × × =( , ) / ( ) .

B3 1 17 200 30 16 358dB  Hz  Hz≥ × × =( , ) / ( ) .

B k SR f3 32dB Hz dB≥ × ×( ) / ∆

T f k SR3 3dB dB Hz= ×∆ / ( )

T f k SR3 3 60dB dB RPM= ×∆ / ( / )

B k SR f3 330dB RPM dB≥ × ×( ) / ∆
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To illustrate the power of the Vold-Kalman filter with
decoupling of close and crossing orders, two signals have been
mixed, a 1 kHz signal and a 300 Hz to 2000 Hz swept signal
containing several orders as shown in the STSF contour plot
in Figure 17. The duration of the signal is 6 sec. The example
simulates a system with two independent axles. All orders and
the 1 kHz sine wave were generated with constant amplitude.

The two first swept orders and the 1 kHz signal were ex-
tracted using 10% bandwidth (0.1 order resolution) two-pole
Vold-Kalman filters without decoupling. The magnitude of the
two swept orders is shown in Figure 18 and the 1 kHz signal is
shown in Figure 19. In this case the 1 kHz order strongly in-
teracts with the swept 4th order around time = 0.1 sec, the 3rd
order around time = 0.4 sec, the 2nd order around time = 1 sec
and the first order around time = 2.7 sec, respectively, show-
ing strong beating phenomena.

When the two tacho signals are used in a simultaneous esti-
mation (i.e., with decoupling), but with the same filter param-
eters as in the single order estimation (i.e., without any
decoupling), we achieve a dramatic improvement in the qual-
ity of estimation, see Figures 20 and 21, although the 1 kHz
signal still interacts with the swept orders numbers 3 and 4,
since they were not included in the calculations.

Conclusion
The Vold-Kalman filter allows for order tracking without

slew-rate limitations. Abrupt changes of the RPM, such as in
gear shifts and tacho dropouts can be handled.

The characteristics of the one-pole, two-pole and three-pole
Vold-Kalman order tracking filter have been investigated in the
time and the frequency domain. The three-pole filter has the
best selectivity and therefore the best ability to suppress ripples
due to beating interference from other order components in the
signal. In the time response to a toneburst, the two- and three-
pole filters exhibit small ripples (overshoot). This will, how-
ever, only contaminate the results when the signal contains
abrupt changes in the amplitude or when the filter bandwidth
selection is too narrow for the signal.

The time frequency relationship of the three filter types is

given by B3dB × τ = 0.2 where B3dB is the 3 dB bandwidth of
the Vold-Kalman filter and τ is the time it takes for the time
response to decay 8.69 dB.

Selection of the bandwidth of the filter should follow B3dB ≥
2/T3dB, where T3dB is the time it takes for an order to sweep
through the 3dB bandwidth of a resonance. In almost all cases
the three-pole filter is the best choice due to its better selec-
tivity in the frequency domain. The computation time for the
three-pole filter is 10% longer than for two-pole filter. Today,
the main use of a single pole filter is to be able to duplicate
processing done in earlier implementation of Vold-Kalman fil-
tering.

In situations where different orders related to different ro-
tating shafts (tacho signals) are close or crossing each other,
decoupling can be used to separate the orders without beating
interference.
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Nomenclature
B3dB = 3 dB bandwidth of the Vold-Kalman filter.

τ = Time constant of the Vold-Kalman filter, i.e., time
it takes for the time response to decay 8.69 dB.

∆f3dB = 3dB bandwidth of a resonance.
T3dB = Time it takes for an order to sweep through the 3

dB bandwidth of a resonance.
SRHz = Sweep rate in Hz per sec.

SRrpm = Sweep rate in RPM per sec.
k = Order number.

Table 1. Peak amplitudes in dB for the 1st, 2nd and 3rd order component extracted with one-, two- and three-pole Vold-Kalman filters with a 
bandwidth of 4.5%, 18% and 40%, respectively.

Table of Measured Peak Amplitudes

1st Order . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
2nd Order . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
3rd Order . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

One-Pole Filter
4.5%, 18%, 40%

−5.3 dB
−6.3 dB
−7.4 dB

Two-Pole Filter
4.5%, 18%, 40%

−5.1 dB
−6.0 dB
−7.2 dB

Three-Pole Filter
4.5%, 18%, 40%

−5.0 dB
−6.0 dB
−7.1 dB

Correct
Amplitude

−5.0 dB
−6.0 dB
−7.1 dB
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Figure 1. Vibration time signal of the run-up.

Figure 2. An STFT of the vibration signal.

Figure 3. Comparison of the measured and curve fitted rpm profiles.

Figure 4. Waveform of the 3rd Order, extracted using a two-pole Vold-
Kalman filter with 10% bandwidth.

Figure 5. Magnitude of the 4 most dominating orders as a function of
time, extracted using a two-pole Vold-Kalman filter with 10% band-
width.

Figure 6. Comparison of filter shapes for one-, two- and three-pole Vold-
Kalman filters with a bandwidth of 8 Hz.

Figure 7. Comparison of the frequency response in the passband for one-
, two- and three-pole Vold-Kalman filters with the same bandwidth of
8 Hz.

Figure 8. Comparison of the magnitude of the time responses for one-,
two- and three-pole Vold-Kalman filters with a bandwidth of 8 Hz. The
applied signal, a tone burst of 1 sec duration, is shown as well.
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Figure 9. Comparison of Time Responses for one-pole 2 Hz, 4 Hz and 8
Hz bandwidth Vold-Kalman filters. The applied signal is a tone burst
of 1 sec duration.

Figure 10. Detailed picture of the time response of the one-, two- and
three-pole filters at the end of the toneburst.

Figure 11. Magnitude of the Phase Assigned Orders of the first three
orders extracted with a two-pole Vold-Kalman filters with bandwidth
of 4.5%, 18% and 40% respectively.

Figure 12. Magnitude of the Phase Assigned Orders of the first three
orders extracted with a one-pole Vold-Kalman filters with bandwidth
of 4.5%, 18% and 40% respectively. Notice the interference due to the
limited selectivity of the one-pole filter.

Figure 13. Detailed view of the part in the contour plot where the 2nd
and 3rd order component excite the first resonance. The free decay of
the damped natural frequency of 795 Hz is clearly seen. A 3200 line
analysis, giving (f of 2 Hz, and a step of 10 msec between the spectra is
used.

Figure 14. Contour plot of an STFT analysis of a run-up of a spin drier.

Figure 15. Curvefit of the rpm as a function of time used as input for
the Vold-Kalman filtering.
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Figure 16. 1st order of the radial, tangential and axial response, dur-
ing the run-up of the spin drier, extracted using a three-pole Vold-
Kalman filter with 50% bandwidth.

Figure 17. An STFT of a signal mixed from a 1 kHz sine wave and a
swept signal containing several harmonics (orders).

Figure 18. First and second order of the swept signal extracted without
decoupling using two-pole Vold-Kalman filter with a bandwidth of 10%.

Figure 19. 1 kHz signal extracted without decoupling using two-pole
Vold-Kalman filter with a bandwidth of 10%.

Figure 20. First and second order of the swept signal extracted using
decoupling and two-pole Vold-Kalman filter with a bandwidth of 10%.

Figure 21. 1 kHz signal extracted using decoupling and two-pole Vold-
Kalman filter with a bandwidth of 10%.


