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ABSTRACT

The Kalman filter has been successfully applied to target
tracking.  However, the Kalman filter is computationally
demanding if the input measurement rate is high and/or if
the state dimension is large.  Furthermore, noisy
measurements may decrease Kalman filter tracking
accuracy.  One way to possibly reduce the computational
rate and sensitivity to noisy measurements is to partition
the input spectrum into subbands, downsample, and
employ Kalman filters in each subband.  In this paper we
present the relations of subband Kalman filter inputs and
outputs to their fullband counterparts.  We also present
results from the target-tracking application which
demonstrate the subband implementation performs equal
to or better (in terms of error variance) than the fullband
case when 1) only subband Kalman filters with significant
energy are updated and 2) when the measurement noise is
large.

1. INTRODUCTION

Multiresolutional approaches have been employed in
signal processing (time domain), image processing (spatial
domain) and computer vision (time and/or spatial
domains) to achieve performance which cannot be realized
using conventional, single-resolution, processing [1].
Multirate techniques have been used for many years for
many advantages, such as reduced computational
complexity for a given task, reduced transmission rates
and/or reduced storage requirements depending on the
application [2].  The application of these techniques to
target tracking has been explored by Hong [3], [4], [5], [6],
who considers both spatial resolution reduction
(multiresolution tracking) and temporal resolution
(multirate tracking) in his work.  In [10] an algorithm of
multirate interacting multiple model (MRIMM) was
developed.  The MRIMM algorithm can be used instead of
the conventional IMM to yield a nearly equivalent
performance (or a better performance when targets do not
exhibit maneuvering behaviors) at significant
computational savings.

Implicit to the concept of multirate tracking is the
assumption that the sensor update rate is determined by a
desire to maintain tracking on multiple targets through a
predefined maneuver envelope.  The resulting sampling
rate, then, will be based on the most extreme maneuver,

considerably higher than is necessary to maintain a target
track under more benign maneuver conditions.  Because of
the oversampling, the sensor measurement stream can be
compressed with little or no degradation in tracker
performance.  The compression is implemented by the
multirate tracking (MRT) algorithm, which provides for
tracking operations at any number of update rates.  The
correct update rate can be determined by multiple-model
filtering which provides an estimate of the target maneuver
condition and, indirectly, the necessary update rate to
maintain track quality.

Multirate target tracking entails transformation of both the
incoming measurements as well as the model of the target
being tracked [3].  The result of these transformations is a
series of data streams representing noise-corrupted
measurements of the target available at various rates, as
well as an appropriate linear model tuned to each sampling
period.  Tracking, then, can be performed at any level of
this measurement tree.  The highest-rate data stream is the
original unprocessed sensor measurement sequence, and
exhibits all of the properties of the original problem.  The
lower-rate levels of the measurement tree require less
computing power to process as well as exhibiting lower
equivalent measurement noise (for perfect association)
because each low-rate measurement is, in fact, a composite
representation of several full-rate measurements.
Multiresolution processing can be analogously applied,
resulting in a complete matrix of measurement sequences
and models, each of varying resolutions and update rates
and each implying a different target model.  Several
conventional tracking algorithms were implemented by  in
this data framework and demonstrated equivalent or
superior performance while yielding significant
computational savings [4].

While previous approaches have employed a wavelet
decomposition (Haar basis functions), this work examines
the use of a filter bank decomposition (uniform frequency
bands).  Unlike previous approaches, we employ filters
which more carefully isolate frequency components and
oversampled subbands which minimize subband aliasing
and its effect on the track estimate.  In addition, the
subband approach leads to signal components with
identical sampling rates and possibly a simpler parallel
processing implementation [7].  In this paper we present
the relations of subband Kalman filter inputs/outputs and
filterbank components to their fullband counterparts.



Results from the application of the subband Kalman filter
to target tracking is compared to the fullband equivalent.

2. SUBBAND KALMAN FILTER
INPUT/OUTPUT EQUATIONS

2.1 Background

In target tracking, three coupled 3-state Kalman filters are
used for estimation of states [8].  The states or modes are
given by
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where R is range, θ is azimuth, and φ is elevation.  These
are arranged into the state vectors
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For each subband Kalman filter, the measurement vector y
is decomposed by first forming a vector time-series of the
measurement data and then analysis filtering and
downsampling.  The subband versions of the transition
matrix Φ , noise covariance associated with the transition
matrix Q, observation matrix H, and the noise covariance
associated with the observation matrix Rc are updated in
the Kalman recursion.  After subband Kalman filtering, we
synthesize the fullband state vector estimate x̂  [9].  The
block diagram for the subband Kalman filter system is
shown in Figure 1.
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Figure 1: Subband Kalman filter.

Due to the various matrix multiplications and inversions,
the Kalman filter is a demanding application for real-time
signal processing especially if the input data
(measurement) rate is high and/or if the state dimension is
large.  Previous work in MR target tracking has
exclusively employed wavelet decompositions (not
uniform subband decompositions) and shown some
benefits at the expense of increased computation [4].  In

performing Kalman filtering in subbands for the target
tracking application, we may realize the following
benefits:

•  By performing the filtering in subbands, we can more
effectively track maneuvers given low SNR
measurements as compared to fullband
implementations.

•  We have the option of selectively updating subband
Kalman filters thereby reducing computational cost as
well as computing the updates in parallel.

In order to mitigate the effects of subband aliasing, we
employ oversampled subbands (at the expense of increased
computation) since subband aliasing associated with
critically-sampled subbands (and similarly wavelets)
substantially reduces the performance in the Kalman filter.

One concern in using subband Kalman filtering for
tracking is the delay involved in the subband
decomposition.  This delay, however, can be controlled in
the analysis/synthesis filter design.  Additionally, in the
case where high-rate sensor data is short-time averaged
before lower-rate processing, the high-rate sensor data can
simply be directed to the filterbank for immediate subband
processing thereby equalizing the delay imposed by
averaging (in the fullband case) and the filter bank (in the
subband case).

2.2 Target Tracking using the Kalman Filter

In the presentation of the input/output equations for the
subband Kalman filter, we assume M subbands indexed by
m; downsampling and upsampling by D < M, i.e.  M / D
oversampled subbands; and length L analysis, synthesis
filters for the mth subband given by

  
fm m m L

T
f f= [ ]−, ,0 1L , 

  
gm m m L

T
g g= [ ]−, ,0 1L

respectively.  We also assume in the target tracking
application, that the 9 states are indexed by i.

In order to perform Kalman filtering in subbands we derive
the relevant equations in four steps:

1) Analysis filter and downsample fullband
measurements into subband measurements

2) Compute subband versions of Φ, Q, H, Rc and
initialize subband state vector and state error
covariance.

3) Compute subband outputs using subband Kalman
filter with subband inputs.

4) Upsample and synthesis filter subband outputs to
construct fullband outputs.

2.3 Analysis of the Inputs

Analysis or subband decomposition of the measurement
vector is performed as follows.  We form a time-series for
each measurement vector as in Figure 2.
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Figure 2: Time series formation for each measurement.

Thus we define the time series for each fullband
measurement with the following notation
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Subband decomposition of the measurement vector is
computed by analysis filtering the time series for each
state and downsampling by D.  Therefore we have as the
mth subband measurement for the ith state at k
(downsampled time scale)

w k Dki m m
H

i, ( ) = ( )f y (4)

where

        
y i i i i

T
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The mth subband measurement vector is then given by

  
wm m m

T
k w k w k( ) = ( ) ( )[ ]1 9, ,L . (6)

In a similar way we can show the following about the
remaining inputs to the subband Kalman filter.

The transition matrix for the mth subband Φm  is given by

Φ Φm
D= (7)

where Φ  is the fullband transition matrix and D is the
downsampling factor.

The subband noise covariance associated with subband
transition matrix     Qm is given by

Q f f Qm m
H

m= (8)

where Q is the fullband noise covariance associated with
fullband transition matrix Φ .  Note we have assumed that
the process noise samples are zero mean, white
(uncorrelated), and Gaussian.

The observation matrix for the mth subband, Hm is given
by

H Hm = (9)

where H is the fullband observation matrix.  Note that in
this calculation, we have assumed rows of H contain only
one non-zero element and thus do not involve a coupling

of state elements in the measurement model.  This is the
case for target tracking given the measurement equation

y Hx vk k k+( ) = ( ) + ( )1 (10)

and observation matrices for range and azimuth

H HR = 





= [ ]1 0 0

0 1 0
1 0 0, θ . (11)

Finally, the subband noise covariance associated with
subband observation matrix Rc m,  is given by

R f f Rc m m
H

m c, = (12)

where Rc is the fullband noise covariance associated with
fullband observation matrix H.  Note we have assumed
that the noise samples are white, zero mean, and Gaussian.

In summary, given a time-series for each measurement and
fullband Kalman filter inputs, the subband versions of the
inputs to the subband Kalman filter are given in Table 1.

Table 1: Subband Kalman Filter Inputs

mth Subband Input Notation Equation

Measurement Vector wm (4)

Transition matrix Φm (7)

Noise covariance associated
with transition matrix

Qm (8)

Observation matrix Hm (9)

Noise covariance associated
with observation matrix

Rc,m (12)

2.4 Synthesis of the Outputs

Synthesis or reconstruction of the state estimate is
performed as follows.  We will form a time-series for each
subband state estimate as in Figure 3.
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Figure 3: Subband time series formation for each state
estimate.

Thus we define the time series for each state estimate in
subband m (on the downsampled time-scale) with the
following notation
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Reconstruction of current ith state estimate will be
computed by D-fold upsampling followed by synthesis
filtering of the time series for the ith state in each
subband.  The results for all subbands are then summed.
We thus have as the current ith state estimate
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is L x 1.  The current state estimate is then

  
ˆ ˆ ˆx k k x k k x k k

T
+ +( ) = + +( ) + +( )[ ]1 1 1 1 1 11 9L .(16)

3. RESULTS

Simulations were conducted to evaluate a 16-subband
Kalman filter for the 2D-tracking (range and azimuth) of a
single target.  Target dynamics are governed by

x x Qk k k+( ) = ( ) + ( )1 Φ (17)

where the time-invariant transition and process noise
covariance matrices are given by

Φ =
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respectively where σ, τ, β are target acceleration variance,
maneuver time constant, and reciprocal of the maneuver
time constant respectively, and
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The state vector represents the position, velocity, and
acceleration of the target at time kΤ where Τ is the time
between measurements.  Range and azimuth filters are

coupled, i.e.  range and azimuth extrapolation requires
estimates of range, range rate, and azimuth estimates [8].
The target is initially positioned at (10000, 40000) with a
velocity of 200m/s and an initial heading of Ðπ/2.  At t =
160-164, the target undergoes an acceleration of (13, Ð13).
At t = 200-204, the target undergoes another acceleration
of (Ð13, 13).  The measurement equation and matrices for
the simulation are given by (10) and (11).  The
measurement noise vectors vi

T k( )  in (10) are independent
Gaussian noise vectors with constant covariance
matrices Rθ = r

RR

r

r
= 





0

0
, (21)

where rR = 16192, r
Ṙ

.= 163 84 , and rΦ = 7.6212eÐ05.

In the simulations, we set the initial states of the target to
the first measurements and the initial state error covariance
matrix is set equal to the measurement error covariance
matrix.  Track initiation and deletion procedures are not
incorporated in the simulations in order to isolate the
performance of the subband Kalman filter.

In the design we assume a 16-subband, 2× oversampled
uniform-DFT filter bank.  The uniform-DFT filter bank
leads to conjugate symmetric subbands thus we need only
update the first M / 2 subbands and take their conjugates
as the updates on the remaining half.  Figures 4 and 5
illustrate nearly identical range tracks for fullband and
subband Kalman filters thus confirming fidelity of the
subband method.
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Figure 4: Range track for fullband Kalman filter

Experiment 1 (Selective Updating).  In this experiment
we examine the effect of updating (i) all subbands, (ii) half
the subbands, (iii) only subband #0.  Table 2 gives
statistics for the mean and standard deviation of R R, ˙,θ̇ .
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Figure 5: Range track for subband Kalman filter

Table 2: Statistical measures for experiment 1

Statistic Fullband Sub (i) Sub (ii) Sub (iii)

  R Ð7.53e+0 5.33e+0 5.31e+0 5.40e+0

Ṙ Ð3.18eÐ1 Ð3.73eÐ1 Ð3.80eÐ1 Ð3.76eÐ1

θ Ð2.58eÐ4 Ð6.89eÐ4 Ð6.89eÐ4 Ð6.89eÐ4

σR 3.69e+1 5.24e+1 5.13e+1 3.60e+1

σ
Ṙ 6.50e+0 7.54e+0 7.26e+0 5.68e+0

σθ 3.87eÐ3 8.08eÐ3 5.22eÐ3 2.96eÐ3

We note in case (iii) where only subband #0 Kalman filter
is updated, standard deviations are lower than their
fullband counterparts but are biased.

Experiment 2 We examine the effect of large measurement
noise on the subband Kalman filter when only subband #0
is updated.  In (i) we assume 10× and (ii) 100× the noise
in Experiment 1.

Table 3: Statistical measures for experiment 2

Statistic Full (i) Sub (i) Full (ii) Sub (ii)

  R Ð2.36e+1 Ð1.91e+1 Ð7.30e+1 Ð6.81e+1

Ṙ Ð8.26eÐ1 Ð6.10eÐ1 Ð1.89e+0 Ð1.24e+0

θ Ð7.87eÐ4 Ð1.72eÐ3 Ð2.48eÐ3 Ð5.50eÐ3

σR 1.16e+2 8.60e+1 3.49e+2 2.20e+2

σ
Ṙ 1.51e+1 1.24e+1 3.24e+1 1.67e+1

σθ 9.50eÐ3 5.19eÐ3 2.29eÐ2 1.23eÐ2

Again, we note in subband Kalman filter cases where only
the lowest subband is updated, the standard deviations are
lower than their fullband counterparts for increased noise.

4. SUMMARY

In this paper we have presented the relations of subband
Kalman filter inputs and outputs to the fullband
equivalent.  We have also presented results from the
target-tracking application which demonstrate the subband
implementation performs better (in terms of error
variance) than the fullband case when 1) only subband
Kalman filters with significant energy are updated and/or
2) when the measurement noise is large.  These results
indicate that the subband method can provide equal or
better performance with potentially less computation
and/or noisier sensors.
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