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Abstract—Microphone arrays are usually employed for spatial 
audio recordings and analysis. This requires converting the raw 
signals of the capsules into a 3D audio format, e.g., a spherical 
harmonics expansion. For processing such conversion, namely 
beamforming, it is necessary to know the complex response of 
each microphone of the array for many Directions-of-Arrival of 
the sound waves. This information constitutes the spatial 
response and describes how the wave fronts are diffracted by 
the surface of the array. Beyond the experimental, numerical, or 
theoretical method employed to get the spatial response, the 
shape of the array and the number of capsules, the choice of the 
Directions-of-Arrival of the sound waves is always critical. On 
one side, to maximize the spatial information and so the 
performance, on the other side to reduce the number of 
directions, and so the measurement or calculation time. The 
paper analyzes the problem of choosing an optimal geometry for 
obtaining the spatial response of a microphone array. It will be 
shown that spherical design, or T-design, allows maximizing the 
spatial information with the minimum amount of testing 
directions. Numerical and theoretical methods have been 
employed for characterizing two microphone arrays, a spherical 
and a non-spherical one. In both cases, Ambisonics format for 
spatial audio has been employed. 

Keywords— Ambisonics, beamforming, microphone array, 
spatial audio, spherical design, T-design 

INTRODUCTION 

Microphone arrays are widely employed for recording the 
sound field while preserving the directional information. This 
can be obtained, for instance, with a spherical harmonic (SH) 
[1] expansion of the signals recorded by the capsules of the
microphone array, as it happens for the Ambisonics theory [2].
Such conversion can be done through linear [3] or parametric
processing [4], [5], [6], [7], [8], [9]. In the first case, a matrix
of filters is employed, while in the second case a spatial
analysis of the sound scene is performed first, extracting the
source signals and their locations, and then theoretical SH
formulas are used.

Regardless the beamforming method, the complex 
response of each capsule of the microphone array for many 
Directions-of-Arrival (DoA) of the sound waves is required. 
Such result can be obtained with three approaches: 
experimental, numerical, and theoretical. The experimental 
method consists in measuring the microphone array in an 
anechoic chamber [10], either rotating the microphone array 
or employing a moving loudspeaker. The theoretical method 
relies on the analytical equations that describe the interaction 
between the sound waves and the geometry of the microphone 
array [11], [12], [13]. Finally, the numerical approach solves 
the diffraction problem with simulations, typically Finite 
Elements Method (FEM) or Boundary Elements Method 
(BEM) [14], [15], [16]. In each of these cases, a grid of DoA 
must be employed for testing the array, and therefore the 
problem of making the most efficient choice arises, with the 
aim of reducing the measurement or calculation time without 
loss of information. 

In this paper, it will be shown that the spherical designs, or 
T-designs, [17], [18] are the optimal geometries for
calculating the complex response of microphone arrays with
sound waves arriving from many DoA. The numerical and
theoretical approaches were used to calculate the diffraction
of plane waves, employing three different types of grids:
equiangular, nearly uniform, and spherical designs. Two
arrays were studied: one is equipped with four capsules
arranged over a sphere having 30 mm diameter, the second
one is a non-spherical array with 32 capsules. The Ambisonics
format has been encoded through a matrix of Finite Impulse
Response (FIR) filters, calculated with a regularized Kirkeby
inversion [19], [20], [21], using first order Ambisonics (FOA)
for the spherical array with four capsules, and high order
Ambisonics (HOA) up to order four for the non-spherical
array with 32 capsules. Three parameters, Spatial Correlation
(SC), Level Difference (LD), and White Noise Gain (WNG)
[22], [23] were used for assessing the spatial performance,
thus allowing to compare the DoA.

The paper is organized as follow. Section II describes the 
beamforming algorithm and the evaluation metrics. Section III 
provides the theoretical basis of the spherical designs. In 
section IV the various geometries analyzed are presented. 
Section V and section VI show the results and, finally, section 
VII summarizes the conclusions. 

AMBISONICS FORMAT, ENCODING AND EVALUATION 

A linear processing has been used for encoding the 
Ambisonics format, leaving parametric methods to future 
development. The beamforming matrix of FIR filters is 
computed in frequency domain by means of the regularized 
Kirkeby inversion: 

𝐻௠,௩,௞ ൌ ൣ𝐶௠,ௗ,௞
∗ ∙ 𝐶௠,ௗ,௞ ൅ 𝛽௞ ∙ 𝐼൧

ିଵ
∙ ൣ𝐶௠,ௗ,௞

∗ ∙
𝐴ௗ,௩ ∙ 𝑒ି௝గ௞൧   (1) 

where 𝑚 ൌ ሾ1, … , 𝑀ሿ are the capsules; 𝑣 ൌ ሾ1, … , 𝑉ሿ are the 
virtual microphones; k is the frequency index; 𝑑 ൌ ሾ1, … , 𝐷ሿ 
are the DoA of the sound waves; the matrix C is the complex 
response of each capsule m for each direction d; the matrix 𝐴 
defines the frequency independent amplitude of the target 
directivity patterns; 𝑒ି௝గ௞  introduces a latency that ensures 
filters causality; ∙ is the dot product; I is the identity matrix; 
ሾ ሿ∗ denotes the conjugate transpose; ሾ ሿିଵ denotes the pseudo-
inverse; 𝛽 is a frequency-dependent regularization parameter 
[21]. 

In this work, Ambisonics format is employed, therefore 
the coefficients of the target directivity matrix A are those of 
the SH functions, usually defined as follows [24]: 

𝐴ௗ,௩ ൌ ට
ሺ2𝑛൅1ሻ

4𝜋

ሺ𝑛െ𝑣ሻ!
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𝑣ሺcos 𝜃ሻ𝑒𝑖𝑣𝜑 (2)
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where ሺ𝜃, 𝜑ሻ are the angles of each direction d, respectively 
elevation and azimuth; n is the degree of the SH, an integer 
value ൒ 0; v is the order of the SH, comprised in the range 
ሾെ𝑛 ൑ 𝑣 ൑ ൅𝑛ሿ; 𝑃௡

௩ are the associated Legendre polynomials 
[24]. The Ambisonics format employed in this work is 
compliant with the current standard AmbiX [25], which 
defines SN3D amplitude scaling and ACN numbering. The 
explicit formulas of SH to be used in (1) to define the target 
directivity A can be found in [26], up to order five. 

The matrix H is converted back to time domain by means 
of the Inverse Fast Fourier Transform (IFFT), thus obtaining 
the matrix h, having dimensions [M;V;N], where N is the 
number of samples of each FIR filter. The effective directivity 
𝐴ᇱ  for each virtual microphone v in each direction d is 
obtained, in frequency domain, as follows: 

 

𝐴ᇱ
ௗ,௩,௞ ൌ ∑ 𝐶௠,ௗ,௞ ∙ 𝐻௠,௩,௞

ெ
௠ୀଵ         (3) 

 
where 𝑑 ൌ ሾ1, … , 𝐷ሿ  and 𝑘 ൌ ሾ1, … , 𝑁/2ሿ . Ideally, i.e., in 
case of perfect reconstruction, the matrix 𝐴ᇱ  would be 
frequency independent, thus resulting in 𝐴′ ൌ 𝐴 for all the d 
directions at all frequencies. 

The SC and LD metrics, employed for assessing the spatial 
performance obtained with different DoA grids, are defined 
as: 
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∑ ሺ஺೏,ೡ,ೖ

ᇲ ሻ೅∙஺೏,ೡ
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ᇲ ሻ೅∙஺೏,ೡ,ೖ

ᇲ ∙ටሺ஺೏,ೡሻ೅∙஺೏,ೡቇವ
೏సభ

           (4) 
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where ሾ ሿ் denotes the transpose. Both metrics are averaged 
over the virtual microphones of order v belonging to the 
degree n: 

 

𝑆𝐶௡,௞ ൌ ଵ

ଶ௡ାଵ
∑ ห𝑆𝐶௩,௞ห௡

௩ୀି௡          (6) 

𝐿𝐷௡,௞ ൌ െ10 log ቂ
ଵ

ଶ௡ାଵ
∑ 𝐿𝐷௩,௞

௡
௩ୀି௡ ቃ       (7) 

 
SC varies in the range 0 ൊ 1, while LD varies in the range 

െ∞ ൊ ൅∞ ሾ𝑑𝐵ሿ.  Each Ambisonics order is perfectly 
reconstructed if: 

 
 𝑆𝐶௜ௗ௘௔௟ ൌ 1            (8) 
𝐿𝐷௜ௗ௘௔௟ ൌ 0 ሾ𝑑𝐵ሿ          (9) 
 
However, a certain amount of error can be accepted. 

Therefore, in this work the following two ranges of 
acceptability are employed: 

 
𝑆𝐶௔௖௖.௥௔௡௚௘ ൌ ሾ0.95; 1ሿ       (10) 
𝐿𝐷௔௖௖.௥௔௡௚௘ ൌ ሾെ1; ൅1ሿ ሾ𝑑𝐵ሿ       (11) 

 
Frequency limits for each order are found considering the 

most restricted combination provided by the two parameters. 
Finally, the amplification of the SH is evaluated through 

the maximum eigenvalues of the filtering matrix H for all SH 
and directions at each frequency. Usually, this is known as 
White Noise Gain (WNG): 

 
𝑊𝑁𝐺௞ ൌ max

௞
ሾ𝜆ሺ𝐻௞

∗ ∙ 𝐻௞ሻሿ        (12) 

where 𝜆 denotes the eigenvalues. WNG should be as low as 
possible at all frequencies. 

 SPHERICAL DESIGN THEORY 

Spherical t-designs have been introduced in [17], where 
the authors proposed to approximate a unit sphere in ℝ௡ with 
a finite set of points (called a spherical t-design) so that the 
integral over the sphere of a polynomial of degree t (or less) 
is equal to the average value of the same polynomial 
evaluated in the t-design set of points. In other words, 
spherical t-designs provide equal weight quadrature rules on 
a sphere. Hence, in ℝଷ a set of P points 𝑝 ൌ ሾ𝐽ଵ, … , 𝐽௉ሿ on a 
unit sphere S is a spherical t-design if, for any polynomial f 
of degree at most t, it is satisfied: 

  

න 𝑓ሺ𝑥ሻ ∙ 𝑑𝑆 ൌ
ଵ

௉
∙ ෌ 𝑓ሺ𝐽௜ሻ

௉

௜ୀଵ
ௌ

      (13) 

  
Therefore, given a certain value of P points, the aim is to 

choose their positions to maximize t. This means that such an 
optimal choice of the positions of these points ensures to be 
able to capture the spatial information up to a maximally high 
spatial frequency. 

Generally, the spherical t-designs are not unique, 
although some very rare cases were found to be rigid [27]. 
The rigid designs are unique for given t and P up to an 
orthogonal transformation. Another important definition is a 
tight spherical t-design, meaning it has a minimum 
cardinality [17]. Tight designs are also rigid designs [28], 
meaning they are unique and have the best combinatorial 
properties at the same time. For the case of ℝଷ , only the 
following rigid tight designs were identified: 
1-design that consists of 2 antipodal points. 
2-design that consists of 4 points (a tetrahedron). 
3-design that consists of 6 points (an octahedron). 
5-design that consists of 12 points (an icosahedron). 

Large t-designs that exceed the Platonic solids are mostly 
computed numerically instead of being constructed in explicit 
analytical manner. More on existence and construction of 
spherical t-designs can be found in [29], [30], [31], [32]. 
However, the techniques used to compute t-designs are 
beyond the scope of this paper. Many of the sets were 
computed, and made publicly available: in [18], the solutions 
for P ranging between 1 and 100 are found showing that, 
despite a general trend of P increasing with t, some solutions 
exhibit a large value of t with a relatively small value of P. It 
is interesting to note that these remarkable geometries do not 
correspond to known Archimedean solids, being instead the 
result of a numerical optimization, such as the Archimedean 
snub cube, which has 24 vertices and is only a 3-design. 
Neither they belong to rigid t-designs, meaning the 
disposition of points for each of them is not unique. 

Furthermore, it appears that all possible t-design 
geometries up to (P=240, t=21) have been already found, and 
some have been found reaching (P=100200, t=1000) [33]. 
Therefore, the already found t-design geometries are 
employed in this work. It must be noted that the number of 
points P of the spherical designs corresponds here to the 
number D of DoA of the sound waves. Some applications of 
t-design geometries to microphone arrays design can be 
found in [34], [35]. 
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 TEST GEOMETRIES FOR MICROPHONE ARRAYS 

As described in the introduction of this work, three kinds 
of grids have been compared: equiangular, nearly uniform, 
and spherical design. Two different sizes for each type were 
used, one with fewer points for the FOA case and one with 
more points for the HOA case.  

The equiangular grid is obtained with a constant spacing 𝛿 
for both azimuth and elevation, respectively: 𝛿 ൌ 20°, 𝐷 ൌ
171 (Fig. 1) and 𝛿 ൌ 12°, 𝐷 ൌ 465 (Fig. 2). 

 

 
Fig. 1. Equiangular grid, 𝛿 ൌ 20°, 𝐷 ൌ 171. 

 
Fig. 2. Equiangular grid, 𝛿 ൌ 12°, 𝐷 ൌ 465. 

The nearly uniform grid, called “balloon” in the following, 
is obtained by subdividing sequentially a sphere into triangles 
for a certain number of times 𝜏, starting from the vertexes of 
a dodecahedron (Fig. 3). The two configurations are: 𝜏 ൌ
4, 𝐷 ൌ 122 (Fig. 4) and 𝜏 ൌ 6, 𝐷 ൌ 362 (Fig. 5).  

 

 
Fig. 3. Nearly uniform subdivision of a sphere into triangles. 

 
Fig. 4. Nearly uniform grid, 𝜏 ൌ 4, 𝐷 ൌ 122. 

 
Fig. 5. Nearly uniform grid, 𝜏 ൌ 4, 𝐷 ൌ 362. 

Finally, many spherical designs of various orders were 
tested, with the aim of optimizing the spatial performance 
while reducing the number of directions. The two optimal 
configurations presented here are: 𝑇 ൌ 10, 𝐷 ൌ 60 (Fig. 6) 
and  𝑇 ൌ 21, 𝐷 ൌ 240 (Fig. 7). 

 

 
Fig. 6. Spherical design, 𝑇 ൌ 10, 𝐷 ൌ 60. 

 
Fig. 7. Spherical design, 𝑇 ൌ 21, 𝐷 ൌ 240. 

 FIRST ORDER AMBISONICS MICROPHONE ARRAY 

The theoretical method was employed for studying a FOA 
(n=0;1) spherical microphone array of 15 mm radius and 
provided with four capsules, arranged in the vertices of a 
tetrahedron. The first analytical solution of the equations 
describing the plane wave diffraction over a rigid sphere was 
discussed in [36]. The solution was further generalized and 
simplified for practical applications, thus, evolving in what is 
commonly used in microphone array processing [37]. The 
total pressure on a spherical surface encountered by a plane 
wave is defined by: 

  
(14) 

 
where R is the sphere radius (15 mm); k is the wave number; 
ℎ௡ሺሻ  is the spherical Hankel function; ሺሻᇱ  denotes a 
derivative; ሺሻ∗  denotes a complex conjugate; the angles 𝜑 
and 𝜗 define the incident plane wave for each direction d. 

Authorized licensed use limited to: Universita degli Studi di Parma. Downloaded on October 30,2022 at 10:36:30 UTC from IEEE Xplore.  Restrictions apply. 



Thus, in any point of the sphere and for any incident wave 
direction the complex sound pressure can be computed. An 
implementation of the described methodology can be found 
in [38]. 

The spatial response of this model was calculated 
employing the following three grids: equiangular ( 𝛿 ൌ
20°, 𝐷 ൌ 171, Fig. 1), balloon (𝜏 ൌ 4, 𝐷 ൌ 122, Fig. 4), and 
spherical design ( 𝑇 ൌ 10 , 𝐷 ൌ 60 , Fig. 6). Comparative 
results of the three grids are shown in Fig. 8, Fig. 9, and Fig. 
10 for SC metric and in Fig. 11, Fig. 12, and Fig. 13 for LD 
metric. WNG metric is shown in Fig. 14. One can note that 
LD is identical for the three cases. Instead, SC is worsened at 
low frequencies for the equiangular grid and identical for the 
others, despite the balloon has almost three times the number 
of directions of the spherical design. Finally, the WNG 
provided by the spherical design grid is the lowest of the three 
cases. Therefore, the spherical design ሺ𝑇 ൌ 10, 𝐷 ൌ 60ሻ 
resulted the optimal choice for testing a FOA microphone 
array. 

 
Fig. 8. FOA microphone array, theoretical method, SC metric, 
equiangular grid (𝛿 ൌ 20°, 𝐷 ൌ 171). 

 
Fig. 9. FOA microphone array, theoretical method, SC metric, 
balloon grid (𝜏 ൌ 4, 𝐷 ൌ 122) 

 
Fig. 10. FOA microphone array, theoretical method, SC metric, 
spherical design grid (𝑇 ൌ 10, 𝐷 ൌ 60). 

 
Fig. 11. FOA microphone array, theoretical method, LD metric, 
equiangular grid (𝛿 ൌ 20°, 𝐷 ൌ 171). 

 
Fig. 12. FOA microphone array, theoretical method, LD metric, 
balloon grid (𝜏 ൌ 4, 𝐷 ൌ 122). 

 
Fig. 13. FOA microphone array, theoretical method, LD metric, 
spherical design grid (𝑇 ൌ 10, 𝐷 ൌ 60). 

 
Fig. 14. FOA microphone array, theoretical method, WNG metric, 
comparison of the three grids. 

 HIGH ORDER AMBISONICS MICROPHONE ARRAY 

The numerical method solves the diffraction problem in a 
simulation. Not being constrained by the analytical equations, 
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the approach is suitable for arrays of any geometry.  A FEM 
simulation was calculated in COMSOL Multiphysics for a 
non-spherical array (Fig. 15) provided with 32 capsules, 
therefore capable to encode HOA. Ambisonics format was 
calculated up to order four. The simulation was solved in the 
frequency range 20 𝐻𝑧 െ 3.5 𝑘𝐻𝑧 , with a resolution of 
10 𝐻𝑧, and employing the plane wave radiation. More details 
are available in [39].  

 

 
Fig. 15. FEM model of a non-spherical microphone array. 

The simulation was repeated employing different DoA 
grids. Results are presented here for the following three 
configurations: equiangular ( 𝛿 ൌ 12°, 𝐷 ൌ 465 , Fig. 2), 
balloon (𝜏 ൌ 6, 𝐷 ൌ 362, Fig. 5), and spherical design (𝑇 ൌ
21, 𝐷 ൌ 240, Fig. 7). Comparative results of the three grids 
are shown in Fig. 16, Fig. 17, and Fig. 18 for SC metric and 
in Fig. 19, Fig. 20, and Fig. 21 for LD metric. Ambisonics 
orders n=1;2;3;4 are shown (n=0 is omitted for improving 
plot readability). WNG metric is shown in Fig. 22. One can 
note that also in this case the LD is very similar among the 
three cases, while SC is slightly worsened at low frequency 
with the equiangular grid and almost identical with the others. 
The WNG metric is clearly lower employing the spherical 
design. Therefore, the spherical design ሺ𝑇 ൌ 21, 𝐷 ൌ 240ሻ 
resulted the optimal geometry for testing a HOA microphone 
array up to fourth order. 

 

 
Fig. 16. HOA microphone array, numerical method, SC metric, 
equiangular grid (𝛿 ൌ 12°, 𝐷 ൌ 465). 

 
Fig. 17. HOA microphone array, numerical method, SC metric, 
balloon grid (𝜏 ൌ 6, 𝐷 ൌ 362). 

 
Fig. 18. HOA microphone array, numerical method, SC metric, 
spherical design grid (𝑇 ൌ 21, 𝐷 ൌ 240). 

 
Fig. 19. HOA microphone array, numerical method, LD metric, 
equiangular grid (𝛿 ൌ 12°, 𝐷 ൌ 465). 

 
Fig. 20. HOA microphone array, numerical method, LD metric, 
balloon grid (𝜏 ൌ 6, 𝐷 ൌ 362). 
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Fig. 21. HOA microphone array, numerical method, LD metric, 
spherical design grid (𝑇 ൌ 21, 𝐷 ൌ 240). 

 
Fig. 22. HOA microphone array, numerical method, WNG metric, 
comparison of the three grids. 

 CONCLUSIONS 

Several distributions of points for characterizing the 
complex response of the capsules of microphone arrays for 
many Directions-of-Arrival of the sound waves were 
evaluated: equiangular, nearly uniform, and spherical design. 
The purpose of the study is to find optimal testing grids, for 
maximizing the spatial response with the minimum number 
of directions. 

Two microphone arrays have been studied, having 
spherical and non-spherical shape, and using the theoretical 
and the numerical method respectively, to solve the 
diffraction of plane waves over the surface of the arrays. 
Then, Ambisonics spatial audio format was calculated up to 
order one for the FOA case (spherical array with four 
capsules) and up to order four for the HOA case (non-
spherical array with 32 capsules). The spatial performance of 
each array was evaluated with three metrics, namely Spatial 
Correlation, Level Difference and White Noise Gain, 
allowing to compare the results provided by the different 
grids of DoA employed to get the microphone arrays 
responses. 

Spherical t-designs revealed to be the most efficient 
geometries for obtaining the complex response of the 
capsules of microphone arrays, since they allow to maximize 
the spatial performance with the minimum number of DoA to 
test. The spherical design of order 𝑇 ൌ 10 having 𝐷 ൌ 60 
points resulted the optimal geometry for First Order 
Ambisonics microphone array. Instead, a spherical design of 
order 𝑇 ൌ 21  having 𝐷 ൌ 240  points resulted the optimal 
geometry for a microphone array capable to operate up to 
Ambisonics fourth order.  
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