IL FONOMETRO

Il fonometro misura il livello del valore quadratico medio della pressione sonora (Lp) espresso in dB.

L'informazione viene rappresentata simultaneamente mediante una barra, che indica in termini pseudo-analogici il livello sonoro, e un valore numerico espresso in dB. I tasti consentono di variare la scala in modo da poter misurare livelli più alti o livelli più bassi impostando dei range che devono contenere il valore da misurare. Se il livello è troppo alto va in "over range", se il livello è troppo basso va in "over flow", in questi casi il valore dato dallo strumento è falsato. Perché la misura sia valida devo regolare lo strumento in modo che il livello sonoro resti centrato. I vecchi strumenti presentano un range di 50 dB, mentre i moderni hanno un range esteso (110 dB), e non necessitano quindi dei tasti di regolazione.

Si può variare la **ponderazione in frequenza** mediante filtri (ponderazione A e ponderazione C).

Il valore rilevato da un fonometro è un **valore medio efficace detto RMS**, ovvero una media dei quadrati della pressione sonora. Del valore ottenuto viene mostrato sul display il corrispondente valore in dB, il livello di pressione Lp . Per essere uno strumento conforme alle normative italiane deve essere in Classe 1 (ad alta precisione).

Lp =
$$10 \log \left(\frac{P_{\text{rms}}}{P_0}\right)^2$$
 (1) $P_{\text{rms}} = \sqrt{\frac{1}{T} \int_0^T p^2(t) dt}$ (2)

Livello equivalente continuo Leq (dB)

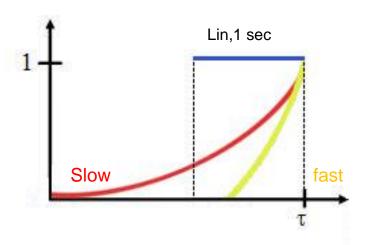
Il **Leq** (Livello equivalente) è il valore medio efficace calcolato sul periodo **T**. Indica il livello sonoro che, se fosse costante darebbe la stessa quantità di energia sonora.

$$L_{eq,t} = 10\log\left[\frac{1}{T} \int_{0}^{T} \frac{p^{2}(t)}{p_{rif}^{2}}\right]$$
 (3)

dove:

T: è l'intervallo di tempo di integrazione P(t): è il valore istantaneo della pressione

Prif: è la pressione di riferimento


Valori RMS esponenziali

I fonometri possono operare anche con una media esponenziale, che fornisce valori di livello sonoro "istantanei".

La curva esponenziale può essere più o meno rigida secondo 3 costanti di tempo T_c :

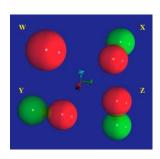
- slow T_c = 1s
- fast T_c = 125 ms (stessa costante di tempo del sistema uditivo umano)
- impulse $T_c = 35$ ms in salita, 1.5 s in discesa

$$p_{rms}(t) = \sqrt{\int_0^\infty e^{-\frac{t}{T}} \cdot p^2(\tau - t) dt}$$
 (4)

CALIBRATORE

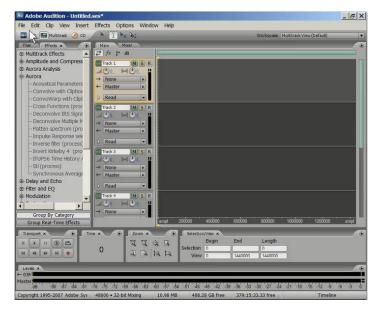
Il calibratore è un **generatore di un suono di calibrazione**. Emette un tono puro con una frequenza di 1000 Hz con pressione RMS di 1Pa. Viene collegato mediante un adattatore al fonometro. La misura da questo rilevata è di 94 dB.

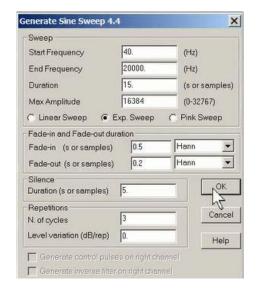
MICROFONO SOUNDFIELD



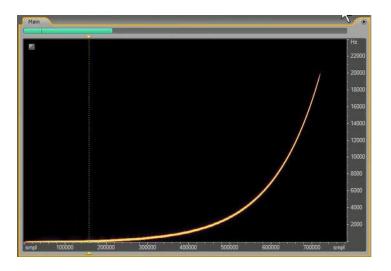
Il microfono Soundfield consente misurazioni simultanee di pressione unidirezionale e delle tre componenti cartesiane di velocità delle particelle. Con questo metodo risulta possibile posizionare il microfono nello spazio e studiarne il campo acustico con le sue componenti.

Il microfono è composto da quattro microfoni con diversa direzionalità e utilizza la terna assiale (X-Y-Z) e un sensore di pressione (W). A seconda della provenienza del suono, si avrà un valore maggiore sull'asse X-Y nel caso in cui il suono sia orizzontale e Z nel caso provenga verticalmente.


Registrato il suono, la scheda audio Roland STUDIO-CAPTURE, (da 16 ingressi e 10 uscite e con una qualità di registrazione pari a 24-bit/192 kHz), lo importa sul computer tramite collegamento USB. I quattro canali, che corrispondono ai quattro cavi X-Y-Z-W, devono riportare tutti lo stesso valore.

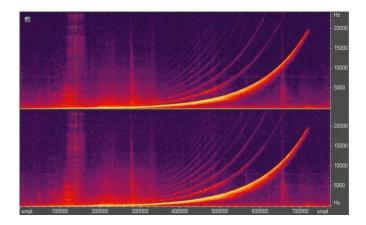

METODO ESS (Exponential Sine Sweep)

Il metodo ESS viene effettuato utilizzando: un computer, una scheda audio Roland, STUDIO- CAPTURE, un dodecaedro e un microfono Soundfield. Il suono precedentemente rilevato con Studio-Capture, viene ora importato in Adobe Audition. Si possono notare le quattro tracce in cui è stato registrato il suono.



Un segnale di prova si può ottenere generando un sine sweep che parte con una frequenza di 40 Hz e termina con frequenza pari a 2000 Hz, una durata di 15 sec, fade-in di 0.5 Hann e fade-out 0.2 Hann.

Lezione del 28/04/2016, ore 08:30 – 10:30

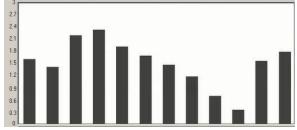


È importante selezionare la voce Exp. Sweep e non Linear Sweep poiché esiste un grande differenza tra gli spettri che si vengono a creare. La Linear Sweep presenta uno spettro piatto e funziona molto bene sulle alte frequenze, mentre l' Exponential Sweep produce uno spettro esponenziale e sfruttando il rumore rosa, il segnale cala di 3 dB per ottava in quanto utilizza le basse frequenze. Si nota che il segnale esponenziale va decrescendo, per ottimizzarlo si preferisce ridurlo di -20 dB.

Utilizzando tre tracce: traccia 1 sweep, traccia 2 registrazione WX e traccia 3 YZ, ottengo degli spettri in cui si nota la "sweepata" principale mediante un sonogramma. Attraverso questo è possibile rappresentare un fenomeno a tre dimensioni (frequenza, ampiezza e tempo) su un supporto bidimensionale. La registrazione dell'altoparlante presenta dei prodotti di distorsione, che sono facilmente visibili aumentando il range a 180 dB.

Lezione del 28/04/2016, ore 08:30 - 10:30

Convolvo il segnale registrato con lo sweep inverso (convolve with clipboard). Il guadagno applicato per riscalare è il miglioramento del rapporto segnale-rumore che si ottiene, in pratica "impaccando" il segnale nel tempo si ha che l'ampiezza aumenta e diventa fuori scala. Per riportarlo in scala si si diminuisce il segnale delle tracce WY e YZ di 60 dB.



La risposta che si ottiene con il metodo ESS è piatta, ottima da utilizzare come filtro per le sale di registrazione e presenta un buon rapporto segnale-rumore a tutte le frequenze privo di prodotti di distorsione.

Con l'integrazione di Schroeder (curva blu) si misurano i valori del tempo di riverbero e utilizzando la formula del T₂₀, data dalla Norma ISO 3382, si possono calcolare i suddetti valori.

D.P.C.M. 5 DICEMBRE 1997:

Normativa dei requisiti acustici passivi degli edifici

Il Decreto Presidenziale del Consiglio dei Ministri del 5 dicembre 1997, definisce i requisiti acustici che devono avere gli edifici di nuova costruzione (o totale ristrutturazione).

Norma 5 grandezze fisiche di riferimento:

- 1. **Il potere fonoisolante apparente R** definito dalla norma ISO 145, misurato in opera. Riguarda l'isolamento di divisori verticali tra due diverse unità immobiliari che si trovano sullo stesso piano.
- 2. L'isolamento acustico standardizzato di facciata D_{2m,nT} si determina valutando la differenza tra il livello sonoro misurato 2 m al di fuori della facciata (L_{1,2m}) dell'edificio e il livello sonoro medio dell'ambiente interno (L₂).

$$D_{2m,nT} = D_{2m} + 10 \log \left(\frac{T}{T_0}\right) \tag{5}$$

dove:

 $D_{2m} = L_{1,2m} - L_2$ è la differenza di livello sonoro

L_{1,2m}: è il livello di pressione sonora esterno a 2 m dalla facciata prodotto dal traffico o da altoparlante

 L_2 : è il livello di pressione sonora medio dell'ambiente ricevente T: è il tempo di riverberazione nell'ambiente ricevente in secondi T_0 : è il tempo di riverberazione di riferimento assunto pari a 0.5 s

- 3. Il livello di rumore di calpestio di solai normalizzato L_n è ottenuto posizionando sul solaio superiore una macchina di calpestio
- 4. L_{ASmax} indica il livello sonoro massimo con costante di tempo slow per impianti con funzionamento discontinuo
- 5. LAeq indica il livello continuo equivalente di pressione sonora

Tabella A - Classificazioni, degli ambienti abitativi (art. 2)

- categoria A: edifici adibiti a residenza o assimilabili;
- categoria B: edifici adibiti ad uffici e assimilabili;
- categoria C: edifici adibiti ad alberghi, pensioni ed attività assimilabili;
- categoria D: edifici adibiti ad ospedali, cliniche. case di cura e assimilabili;
- categoria E: edifici adibiti ad attività scolastiche a tutti i livelli e assimilabili;
- categoria F: edifici adibiti ad attività ricreative o di culto o assimilabili;
- categoria G: edifici adibiti ad attività commerciali o assimilabili.

Tabella B - Requisiti acustici passivi degli edifici, dei loro componenti e degli impianti tecnologici

Categorie di cui alla Tab. A	Parametri				
	R'w(*)	$D_{2m,nT,w}$	L'n,w	L _{ASmax}	LAeq
1. D	55	45	58	35	25
2. A, C	50	40	63	35	35
3. E	50	48	58	35	25
4. B, F, G	50	42	55	35	35

(*) Valori di R'w riferiti a elementi di separazione tra due distinte unità immobiliari.

Tabella A: divide gli edifici in categorie e classifica gli ambienti. L'ambiente industriale non è soggetto a limiti acustici a meno che non abbia parti commerciali.

Tabella B: fornisce i 5 parametri da rispettare per ogni categoria. Le prime tre colonne riguardano l'involucro dell'edilizio mentre le ultime due gli impianti. R_w ed $D_{2m,nT,w}$ sono valori minimi mentre $L'_{n,w}$, L_{ASmax} e L_{Aeq} sono valori massimi.

ISOLAMENTO ACUSTICO DI FACCIATA DI EDIFICI

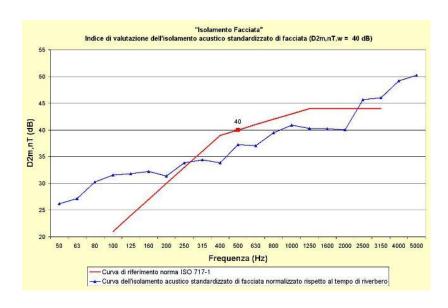
Da norma di può misurare in 2 modi:

- usando il naturale rumore del traffico stradale che deve essere forte e continuo.
- mediante un altoparlante con incidenza di 45° sulla facciata che genera un rumore bianco.

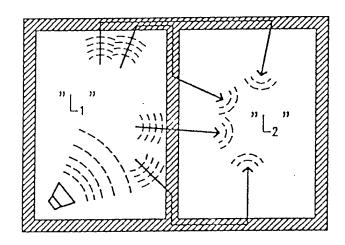
Viene posto un microfono a 2 m dalla facciata e uno interno all'edificio. Si determina la differenza tra il livello sonoro misurato al di fuori ($L_{1,2m}$) e il livello sonoro medio dell'ambiente interno (L_2). Si definisce la formula:

$$D_{2m,nT} = D_{2m} + 10 \log \left(\frac{T}{T_0}\right) \tag{6}$$

dove:


 $D_{2m} = L_{1,2m} - L_2$ è la differenza di livello sonoro

L_{1,2m}: è il livello di pressione sonora esterno a 2 m dalla facciata prodotto dal traffico o da altoparlante


 L_2 : è il livello di pressione sonora medio dell'ambiente ricevente T: è il tempo di riverberazione nell'ambiente ricevente in secondi T_0 : è il tempo di riverberazione di riferimento assunto pari a 0.5 s

La norma del 5 dicembre 1997 utilizzata per il calcolo degli indici è stata sostituita dalle **UNI EN ISO 717**.

Si determina quindi **l'indice di valutazione dell'isolamento di facciata** applicando la curva ISO 717. Si confronta la curva di riferimentoalla curva misurata, procedendo a passi di 1 dB, fino a quando la somma degli scarti sfavorevoli è più grande possibile. Si valuta il valore $D_{2m,nT}$ in dB, corrispondente alla frequenza di 500 Hz. In questo caso corrisponde a 40 dB, valore conforme alle tabelle.

ISOLAMENTO ACUSTICO PER VIA AEREA TRA AMBIENTI

La misura viene svolta in stanze confinanti di appartamenti di diversa proprietà. Viene posta una sorgente (dodecaedro) nella stanza trasmittente e un cavalluccio con fonometro, prima in una poi nell'altra stanza (L_1 e L_2). Essendo una struttura unica sono presenti cammini di fiancheggiamento che peggiorano il valore della misura. Il potere fonoisolante misurato in opera è dai 3 a 5 dB peggiore del valore misurato in laboratorio.

Se ci sono tubi metallici che perforano il muro e fuoriescono nella stanza adiacente creano un canale di propagazione; fanno scendere il potere fonoisolante di 10 dB (errori di progettazione).

Anche in guesto caso si fa l'indice di valutazione secondo la **norma ISO 717**.

Potere fonoisolante apparente R'

Evita qualsiasi effetto dal grado di arredamento dei locali

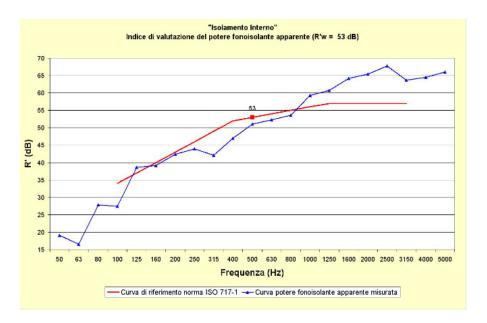
$$R' = D + \log\left(\frac{S}{A}\right) \tag{7}$$

Dove:

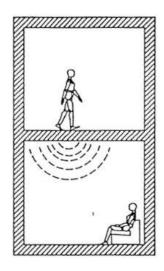
 $D = L_1 - L_2$ è l'isolamento acustico

L1: è il livello medio di pressione sonora nell'ambiente emittente

L2: è il livello di pressione sonora nell'ambiente ricevente


S: è l'area dell'elemento divisorio

A: è l'area equivalente di assorbimento acustico nella camera ricevente ed equivale a :


$$A=0.16 \left(\frac{V}{T}\right) \tag{8}$$

Dove:

- V: è il volume dell'ambiente ricevente in m³
- T: è il tempo di riverbero misurato nell'ambiente ricevente misurato mediante clappatore o palloncini)
- Si determina l'indice di valutazione posizionando la curva.

ISOLAMENTE DAL RUMORE DI CALPESTIO DI SOLAI

Riguarda la trasmissione per via solida del suono che si genera quando si cammina sul pavimento.

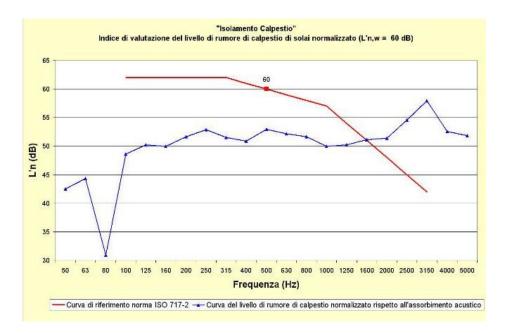
Si verifica mediante uno strumento dotato di 5 martelli d'acciaio sollevati ad una altezza di 40 mm e lasciati cadere, con una sequenza pseudo-casuale. Si posiziona in vari punti del pavimento al piano superiore mentre al piano inferiore si misurano con il fonometro i livelli sonori.

E' applicata la norma ISO 717 per determinare l'indice di valutazione.

Livello di pressione sonora di calpestio normalizzato rispetto al tempo di riverbero L'nt

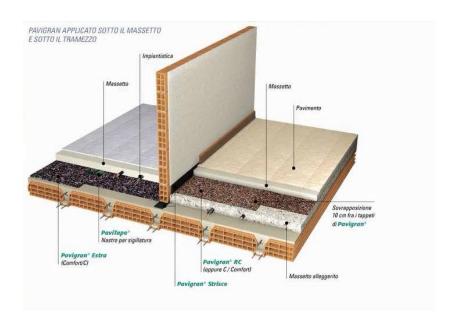
Viene normalizzato per correggere l'assorbimento del locale ricevente

$$L'_{n} = L_{i} + \log\left(\frac{T}{T_{0}}\right) \tag{9}$$


Dove:

T₀: è il tempo di riverberazione di riferimento assunto come 0.5 s

Viene valutato il valore a 500 Hz.


Cambia la curva ISO per fare il l'indice di valutazione : la propagazione decresce con la frequenza. Questo indica che i valori di livello di calpestio buoni sono bassi. Se la curva cresce ad alte frequenze significa che è errata la stratigrafia del solaio.

Più il materiale è morbido e cedevole all'impatto meno rumore viene generato.

La soluzione tecnica corretta è quella di inserire nella stratigrafia un materassino anti-calpestio. Questo va posizionato sopra la soletta portante e deve ripiegare fino al battiscopa.

Lezione del 28/04/2016, ore 08:30 – 10:30

