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Introduction
In this lesson it is important to define the limits of some operations, particularly the limits of Fourier Transform analysis, because, even if it is widely employed in many different sciences, the limitations for being able to use FFT analysis are usually not clearly explained. In fact, if we don’t meet certain constraints, the FFT produces errors which can be misleading and destroy the signal.
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Fig.1 - Sampling of an analog signal.
Brief Summary
We have understood that sampling an analog signal produces two kinds of error:

1. time domain error, where continuous time is discretized in a fine step Δτ and those steps must be small enough compared with the period;
2. amplitude error, because when we sample an analog signal with integer numbers, the digital resolution is limited: the accuracy of these integer numbers is given by the numbers of bits (typically ranging between 16 and 24 bits).
So a sampled digital signal represents faithfully the original analog one only if the Shannon’s Theorem is satisfied, that says:
	“Sampling frequency must be at least twice of the largest frequency in the signal being sampled”



A frequency equal to half the sampling frequency is named the Nyquist’s frequency.

Aliasing
If the Shannon's theorem is not respected, that is if we don’t sample an analog signal with a sample rate that is at least twice the maximum frequency of the spectral component of the information signal, in frequency domain we get spectral componenets at frequencies that the original signal didn’t contain. These spectral components, called alias, introduce a distortion in time domain which makes the sampled signal unusable.
When we record a signal in real world, the microphone picks up every frequency, so even if we don’t hear anything above 20 kHz (maximum human audible frequency) there are also much higher frequencies that destroy the signal once it is sampled with a sampling rate of 40 kHz.
To see aliasing, we open Adobe Audition and generate a 15 seconds long sine sweep, ramping up to 48 kHz, with a sample rate of 96 kHz and a Nyquist’s frequency of 48 kHz. 
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Fig.2 - Spectrogram of signal at full bandwidth.
Now we decimate “brutally” this signal, keeping just the “odd” samples (we keep the first sample, discard the second, keep the third, discard the fourth, etc.), without applying a suitable anti-aliasing filter, so that the Nyquist frequency is halved, that is 24 kHz.
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Fig.3 - Spectrogram of signal at half bandwidth, without anti-aliasing.
Looking at the signal’s spectrogram, we note that when the signal reaches the new Nyquist’s frequency (at time=12.32s), the frequency of the tone starts coming down instead of continuing to go up (or disappearing “out of the screen”).
What happens at every instant is that the frequency of the signal above the Nyquist’s frequency is folded back in the audible spectrum at a frequency which is the Nyquist’s frequency minus the excess, where the excess is how much the instant frequency is above the Nyquist’s frequency.

So, for example, a tone having frequency of 30 kHz, having an excess of 6 kHz, is mirrored in the audible spectrum at a frequency of [24 - 6] kHz = 18 kHz
This phenomenon is called aliasing and the folded back tone is called aliased signal or mirrored signal.

This means that inside our recording, even if we don’t hear anything above 20 kHz, if there is a signal which was sampled digitally with not enough sampling rate and without an anti-aliasing filter, there are mirrored signal components that destroy our original record.
Anti-aliasing Filter
To avoid aliasing, that is the presence of signals at frequencies higher than the Nyquist frequency, we need to insert an analog low-pass filter before the sampler. This filter is called  anti-aliasing filter.

Adobe Audition has a very nice filtering tools called “Scientific Filters” that provides the most common types of filter ,such as low-pass, high-pass, band-pass and band-stop.

· low-pass filter: is a filter that is flat up to a cutoff frequency (for example 20 kHz) and above this frequency it falls down. This means the signal remains unchanged up to the cutoff frequency, after which it is cut;
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Fig.3 - Low-pass filter.
· high-pass filter: is the complementary of low-pass filter, in fact it is flat from a certain frequency onwards, so the signal is cut up to this frequency and then it passes unaltered;
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Fig.4 - High-pass filter.
· crossover: composed by a pair of low-pass and high-pass filter, it is a frequency divider that splits a signal in two signals, one containing low frequency and one containing high frequency;
· band-pass filter: is a cascade of high-pass and low-pass filter so it is flat only between two frequencies. This means that the signal remains unchanged only inside this range of frequencies and it is attenuated outside;
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Fig.5 - Band-pass filter.
· band-stop filter: is the complementary of band-pass filter because the signal is untouched at every frequency except within a frequency band. When the two frequencies are very close together, it is also called notch filter, because it rejects a small portion of a signal spectrum.
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Fig.6 - Band-stop filter.
Returning to the anti-aliasing, low-pass filter, the slope of the rejection zone is given by the order of the filter.
	“A low order gives the filter a gentle slope, while an high order gives the filter a steep slope, so the greater is the order the steeper is the slope”



Approximately, every order of filtering means a slope of 6 dB/Oct.
So to avoid aliasing, before sampling an analog signal with small sample rate, we need to apply a steep anti-aliasing filter so that the high frequency portion of the spectrum is killed.  

Time-Frequency Relationship
Now we use a Dirac’s Delta function to test the goodness of a 10th order anti-aliasing filter. To do this we create a piece of silence, we zoom in and we bring just only one sample at the maximum level. 

What we have created is a symmetric analog signal called Sync function that is a band limited Dirac’s Delta. 
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Fig.7 - Sync function.
If we apply a 10th order low-pass filter at 20 kHz to the Sync function what we get is the impulse response of the filter; this is an asymmetric signal. 
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Fig.8 - Impulse response of 10 order anti-aliasing filter.
This signal is quite long, in fact the effect of a low-pass filter is to smear the signal in time domain – the higher the order, the longer will be the time domain response.

Now we analysis the signal in frequency domain.
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Fig.9 - Impulse response of 10 order anti-aliasing filter in frequency domain.
 To be a good filter, at Nyquist frequency we need to get at least an attenuation of 80 – 90 dB, but in this case the attenuation is only 88 – 63 = 25 dB, so the 10th order low-pass filter is not enough to avoid aliasing.

So we increment the filter order from 10 to 40, to have a more vertical anti-aliasing filter. If we look now the spectrum of the impulse response, we note that the attenuation at the Nyquist frequency is about 155 – 63 = 92 dB, that is good.
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Fig.10 - Impulse response of 40 order anti-aliasing filter in frequency domain.
	“The price to pay to have a filter that works accurately in the frequency domain is that the same filter smears the signal in time domain”



In fact the impulse response of a 40th order filter is longer than the one of a 10th order filter.
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Fig.11 - Impulse response of 40th order anti-aliasing filter.
So there is an interrelationship between what happens in the frequency domain and what happens in time domain, that is: 
	“the smaller is the frequency range in which we perform our anti-aliasing filter, the longer will be the impulse response of our filter in time domain”



This is the Heisenberg uncertainty principle applied in acoustics, in fact it is impossible to have a signal that is both steep in frequency domain and short in time domain.

	N.B: increasing the sampling frequency is only an apparent improvement because it doesn’t solve the aliasing problem, but it shifts it to higher frequency; so what we real need is a good anti-aliasing filter.



FIR Filtering – Finite Impulse Response
FIR filtering is a structure that allows performing digital signal processing and models accurately any kind of linear systems.
The effect of the linear system h on the signal x passing through it is described by the mathematical operation called convolution, defined by: 
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This is usually written, in compact notation, as:
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The output signal y is given by the product between the input signal x and coefficients of the impulse response of the filter h. The FIR filter is obtained by repeating this operation N times, where N is the length of the impulse response.

This means that the system has a memory of N steps because the output depends only on the previous N input samples.
IIR Filtering – Infinite Impulse Response
IIR filtering is another structure to make digital processing invented to replace FIR because this one was considered inefficient. 

The filtering caused by a linear system can also be described by the following recursive formula: 
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In practice the filter output depends not only on input samples x, as it happens in the FIR filtering, but also as a function of output samples y obtained at the previous time steps.
So this is a filtering structure with feedback because the computed output values y are sent back as input to the filter at the next time step.
This is dangerous because if the values of b coefficients are too large, the output signal becomes larger and larger, so the structure can become easily instable (this is what happens if we place a microphone in front of the loudspeaker). 

To avoid feedback, we need to design coefficients a (that multiply input samples x) and coefficients b (that multiply output samples y) to hold the system stable whatever signal enters in the filter.
FIR Filtering Vs. IIR Filtering
In the past it was thought that having an impulse response with several thousand coefficients was computationally too heavy to be performed in real time, because processors weren’t able to program convolution efficiently.

So the FIR filtering wasn’t widely employed and IIR filtering was invented, because it allows to accurately represent the same behavior of the system with a much smaller number of coefficients than with the FIR filtering.

But this was true only in old-time simple cases and not in today’s complex real systems.
In theory, the IIR structure reduces the number of coefficients to make the same digital processing, because with a few coefficients we can keep in memory the previous state of the system.
In practice, when we simulate real systems with significant reverberation, the number of coefficients of FIR filtering is several thousands, even millions, but nevertheless the computation is quick and cheap, thanks to the availability of ultrafast convolution algorthms (partitioned convolution in frequency domain), whilst the computation of IIR filters is comparatively slow.
Hence today it is generally more convenient to employ always FIR filtering, as the computational load required is smaller, despite processing a much larger number of coefficients. There are also other significant advantages for the FIR structure:
· IIR ( the strategies to compute the coefficients a and b are very complex; 
· FIR ( defining the set of coefficients h is straightforward.   
So, albeit most textbooks are still claiming better computational performances employing IIR filters, the future is for FIR filtering, and a number of applications traditionally reserved to IIR filtering, such as digital reverbation, are nowadays employing “convolution” (that is, FIR filtering) for performing emulation of large concert halls or cathedrals, even if this requires to employ impulse responses several seconds long.
A modern, entry-level processor (an intel i5 running at 2 GHz, for example) can convolve simultaneously more than 50 channels, each being processed with an impulse response longer than 5 seconds, at a sampling frequency of 48 kHz.

That means crunching more than 12 millions filtering coefficients, and this is easily done in reatime, with a CPU load of less than 50%....

This is also true for low-cost DSP units, such as those employed in a mobile phone. For example, an Atmel Diopsis processor, running at just 80 MHz, can convolve 8 channels at 48 kHz, each with a FIR filter of 65536 samples: the count of coefficents being crunched is in this case equal to 524288.

In both cases, one can roughly estimate the current FIR filtering capability, based on the processor clock, around 6 millions FIR coefficients per GHz.

With IIR filtering, the performance is approximately 1/1000 of that….

FFT – Fast Fourier Transform
The Fast Fourier Transform (FFT) is often employed in Acoustics, with two different goals: 
· Performing spectral analysis with constant bandwidth.

· Fast FIR filtering 
FFT transforms a segment of time-domain data in the corresponding spectrum, with constant frequency resolution, starting at 0 Hz (DC) up to Nyquist frequency (which is half of the sampling frequency).
FFT processing has become fast and efficient thanks to the inclusion of FFT hardware inside the core of modern processors.

	“The only aspect that you should consider is the length of the segments analyzed, in fact the longer the block in time domain the finer the frequency resolution of the spectrum”.



[N sampled points in time] ( [N/2 + 1 frequency bands]


(the +1 represents the band at frequency 0 Hz, that is the DC component
 – but in acoustics, this is always with zero energy…)

So if we want to follow the variation of human’s voice, if we use short blocks, the frequency-domain resolution will be coarse but the time response will be very fast.
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Fig.12 - Short segments in time domain, coarse resolution in frequency domain.

At the opposite if we use very long blocks the frequency resolution will be very narrow but the time response will be slow.

That’s the indetermination principle, again…
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Fig.13 - Long segments in time domain, thin resolution in frequency domain.
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