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(7) ABSTRACT

A system (100) for signal processing using one or more
filters includes a controller (102) that partitions an impulse
response of a filter into a plurality of impulse response
blocks and calculates a Discrete Fourier Transform (DFT) of
each impulse response block using a Fast Fourier Transform
(FFT) algorithm. A processor (104) that is coupled to the
controller (102) receives an input sample block including
samples of a signal to be processed and receives the DFT of
each impulse response block from the controller (102). The
processor (104) calculates a DFT of the input sample block
using an FFT algorithm, performs a spectral multiplication
of the DFT of the input sample block with the DFT of each
impulse response block, overlap-adds the blocks resulting
from each spectral multiplication to create an output spectral
block, performs an inverse FFT on the output spectral block
to create an output sample block, and communicates the
output sample block.
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SYSTEM AND METHOD FOR SIGNAL
PROCESSING USING AN IMPROVED
CONVOLUTION TECHNIQUE

TECHNICAL FIELD OF THE INVENTION

This invention relates generally to the field of digital
signal processing, and more particularly to a system and
method for signal processing using an improved convolution
technique.

BACKGROUND OF THE INVENTION

Digital filters are often important components of digital
signal processors (DSPs). A common type of digital filter is
a finite impulse response (FIR) filter that processes an input
signal by convolving the input signal with the filter’s
impulse response. This convolution may be performed using
various methods. One method involves direct convolution.
Direct convolution has no inherent latency, but its compu-
tational cost is often unacceptably high when long convo-
lutions are to be computed in real-time. If computations
were instantaneous, each sample input to the direct convo-
lution algorithm would yield a convolved output sample.
Therefore, the input to output latency inherent in the con-
volution algorithm structure is null. The actual latency of
direct convolution results from the time necessary to com-
pute each output sample. If the convolving filter is relatively
short, the computation time is smaller than the sample
period, and thus the latency is of only one sample. However,
the computational cost of direct convolution increases lin-
early with the length of the convolving filter, which makes
this technique unsuitable for performing long convolutions
(thousands of sampling points) in real-time.

The cost problem may be addressed using frequency
domain block convolution. This computationally efficient
technique is based upon the fact that the Fourier Transform
of the convolution of two signals is equal to the product of
the Fourier Transforms of each individual signal. The Fast
Fourier Transform (FFT) algorithm may be used in this
approach, and consequently the cost per sample of these
convolution techniques increases logarithmically with the
length of the convolving filter (the “block™), which keeps
cost at a more acceptable level when dealing with long
convolutions. This type of convolution method may be
referred to as a “single-block” convolution.

However, block processing techniques have an inherent
input to output latency equal to the length of the block since
the input sample block must be full in order to start com-
puting the output sample block. This makes this kind of
algorithm unsuitable for performing long convolutions in
real-time due to the high latency. For example, when ren-
dering three-dimensional audio, a typical room response can
be several seconds long, which is far above acceptable
latency levels for real-time audio rendering.

An existing approach to achieve low input to output
latency while keeping computational cost at an acceptable
level is to section the convolving filter into shorter blocks
and perform several frequency-domain block convolutions
in parallel, one for each shorter block. The output is obtained
by summing the delayed outputs of the shorter convolutions,
according to the superposition principle. The block length is
chosen according to a specified input to output latency. This
type of convolution may be referred to as a “multiple-block™
convolution. Multiple block convolution may use blocks of
uniform or non-uniform size.

One or more of the previously described methods may be
adequate for performing many digital signal processing

10

15

20

25

30

35

40

45

50

55

60

65

2

tasks. However, as applications require increasingly fast and
complex digital signal processing, new convolution methods
are needed to meet these demands.

SUMMARY OF THE INVENTION

According to the present invention, disadvantages and
problems associated with previous systems and methods for
signal processing have been substantially reduced or elimi-
nated.

According to one embodiment of the present invention, a
system for signal processing using one or more filters
includes a controller that partitions an impulse response of
a filter into a plurality of impulse response blocks and
calculates a Discrete Fourier Transform (DFT) of each
impulse response block using a Fast Fourier Transform
(FFT) algorithm. A processor coupled to the controller
receives an input sample block including samples of a signal
to be processed and receives the DFT of each impulse
response block from the controller. The processor calculates
a DFT of the input sample block using an FFT algorithm,
performs a spectral multiplication of the DFT of the input
sample block with the DFT of each impulse response block,
overlap-adds the blocks resulting from each spectral multi-
plication to create an output spectral block, performs an
inverse FFT on the output spectral block to create an output
sample block.

The system and method of the present invention provide
a number of important technical advantages. The present
invention allows long convolutions to be computed with low
input to output latency and minimal computational cost. The
present invention is particularly well-suited for situations
where long convolutions are to be computed in parallel and
outputs of these convolutions are to be mixed. Such appli-
cations include three-dimensional audio rendering, audio
effects (for example, sound reverberation), and surround
sound or virtual surround sound technologies. The present
invention may be used for any application that involves the
use of convolution techniques, including but not limited to
graphics or video processing.

Applications requiring long convolutions often use com-
putationally expensive FIR filters in a parallel structure. For
example, in three-dimensional audio rendering, each parallel
FIR branch models an acoustic path (either a direct path or
a reflection) that exists between a source and a virtual
listener. The combination of these filters requires long
convolutions (often thousands of sampling points), such that
previous convolution methods are either too computation-
ally expensive or introduce too much latency for use in
real-time audio or video rendering. These previous methods
typically either reduce computational cost at the expense of
unacceptably high latency (for real-time applications) or
they reduce latency at the cost of unacceptably high com-
putational cost. The present invention provides a convolu-
tion technique that optimizes the tradeoff between latency
and computational cost so as to allow for minimum-cost
convolution, while satisfying latency requirements of real-
time applications. Other technical advantages are readily
apparent to those skilled in the art.

BRIEF DESCRIPTION OF THE DRAWINGS

To provide a more complete understanding of the present
invention and further features and advantages thereof, ref-
erence is now made to the following description taken in
conjunction with the accompanying drawings, in which:

FIG. 1 illustrates a long filter response and an equivalent
parallel structure of short filter responses;
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FIG. 2 illustrates the computational cost of a multiple-
block convolution as a function of the number of samples
per block;

FIGS. 3 and 4 illustrate exemplary block structures of
multiple-block convolution and frequency-domain delay
line (FDL) convolution, respectively;

FIG. § illustrates the computational cost of FDL convo-
lution as a function of the number of samples per block;

FIG. 6 illustrates the computational cost of FDL convo-
lution in greater detail;

FIG. 7 illustrates the computational cost as a function of
the number of samples per block for multiple-block convo-
lution and for FDL convolution;

FIG. 8 illustrates the computational cost as a function of
the number of samples per block for multiple-block
convolution, FDL convolution with mixing in the time
domain, and FDL convolution with mixing in the frequency
domain;

FIG. 9 illustrates an exemplary dual-FDL convolver par-
titioning;

FIG. 10 illustrates exemplary points where the second
FDL sample size of the partition of FIG. 9 is optimal for a
given number of samples per block;

FIG. 11 illustrates the computational cost of dual-FDL
convolution as a function of the number of samples per
block;

FIG. 12 illustrates the computational cost of multiple-
block, single-FDIL, and dual-FDL convolution as a function
of the number of samples per block;

FIG. 13 illustrates an exemplary partition of a filter
response into four FDLs;

FIG. 14 illustrates an exemplary table of the possible
states for a pointer position used in conjunction with an
optimal partition finding process;

FIG. 15 illustrates an exemplary graphical representation
of the possible states at each pointer position of FIG. 14;

FIG. 16 illustrates the exemplary states and the possible
state transitions for each pointer position of FIG. 14;

FIG. 17 illustrates the computational cost as a function of
the number of samples per block for multiple-FDL and
dual-FDL convolution;

FIG. 18 illustrates exemplary output of an optimal parti-
tion finding process; and

FIG. 19 illustrates an exemplary system implementing
multiple-FDL convolution and an optimal partition finding
process.

DETAILED DESCRIPTION OF THE
INVENTION

As described above, several previous methods for per-
forming convolutions may be used, and each of these
methods has an associated computational cost and latency.
In order to provide a foundation for the present invention,
this description will first evaluate the cost and latency
associated with direct, single-block, and multiple-block con-
volution. The description will then describe the present
invention and its advantages over the prior convolution
techniques.

Direct Convolution

The cost of direct convolution can easily be evaluated
from the convolution formula, which consists of an inner-
product (for example, a transversal finite impulse response
(FIR) filter) between the filter impulse response and the
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time-reversed version of the input samples. For a filter
impulse response of length N, the computation of one
convolved sample requires N “multiply-adds” (commonly
referred to as “madds”). A multiply-add is the combination
of one multiplication and one addition.

Single-block Convolution

The two primary single-block convolution methods are
the “overlap-add” and “overlap-save” methods. These meth-
ods are well known in the art. Each of these methods
computes the Discrete Fourier Transform (DFT) on the input
sample block, multiplies the DFT of the input block by the
DFT of the impulse response, and inverse-transforms the
resulting block to obtain a time-domain block of output
samples. The DFT of the impulse response is typically
pre-computed. This type of convolution is referred to as
single-block convolution since a single DFT of the whole
impulse response is used (the impulse response is not
partitioned into smaller blocks).

To determine the computational cost of these methods, it
will be assumed that the impulse response length N is an
integer power of two (obtained by zero-padding the original
impulse response if necessary), and that its DFT has been
pre-computed using a Fast Fourier Transform (FFT) algo-
rithm. The cost of the N-point real FFT algorithm is
expressed as k-N-log,(N), where k is a proportionality
constant that depends on the particular FFT algorithm being
used. In the following examples, a typical value of k=3/2
will be used.

For an impulse response having N points, both the
overlap-add and overlap-save methods calculate FFT blocks
of 2N points to prevent the output block from being time-
aliased. However, both techniques generate output blocks of
N points, since the window on the input signal slides N
points at a time. The cost per output sample will be obtained
normalizing by N. Therefore, the cost due to the direct FFT
is:

cost(FFT) =

(D2N)log(2N)

5 = 2klog(2N) = 2k[1 + log{N)] = 2k + 2klog(N)

The resulting FFT block of N complex points is then
multiplied by the FFT block of the impulse response. This
requires N complex multiplications, which require 4N
multiply-adds:

. 4N
cost(Spectral Multiply) = = 4

The inverse FT (FFT™") on the resulting block has the same
cost as the direct FFT in the input signal:

cost(FFT4)=k(2N) log(2N)=2k log(N)

An additional cost of N adds (one add per sample) is
necessary to overlap-add the first N-point half of the
2N-point output block, while the overlap-save technique just
saves the second N-point half of the 2N-point output block
(no add is necessary). Thus, the respective costs of the
overlap-add and overlap-save techniques are:

cost(Overlap-Add)=cost(FFT)+cost(Spectral Multiply)+
cost(FFTY)+cost(Add)=4k+4k log(N)+5

cost(Overlap-Save)=cost(FFT)+cost(Spectral Multiply)+
cost(FFTY)=4k+4k log(N)+4

The cost of direct convolution is a linear function of N,
whereas the cost of single-block convolution is a logarithmic
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function of N. It is important to note that for typical FFT
algorithms, the linear and logarithmic curves cross some-
where between N=32 and N=64. Therefore, for values of N
smaller than 64 points, direct convolution is computationally
cheaper than block convolution. Using a typical value of
k=3/2, the respective costs of overlap-save and direct con-
volution are:

for N=32

cost(Overlap-Save)=40 madds
cost(Direct Convolution) 32 madds
for N=64

cost(Overlap-Save)=46 madds
cost(Direct Convolution)=64 madds

Multiple-block Convolution

The advantage of single-block convolution is its effi-
ciency compared to direct convolution. However, single-
block convolution has an inherent latency equal to the block
length of the impulse response, and thus presents an input to
output latency problem when convolving with long impulse
responses. An existing approach to solve this problem is to
split the impulse response into shorter blocks, to compute
the shorter convolutions of the input for each block, and to
sum the respective outputs. Before performing the sum, each
output is delayed by an amount equal to the time offset of its
respective block in the long filter response.

FIG. 1 illustrates a long impulse response 10 and an
equivalent parallel structure 12 of short filter responses,
obtained by splitting long impulse response 10 into shorter
blocks 14. The impulse response of each parallel branch 18
in structure 12 is given by the associated shorter block 14.
Each block 14 is followed (or preceded) by a delay 16 equal
to the time offset of the corresponding block 14 in long
impulse response 10. The basic method of this type utilizes
uniform block partitions (all blocks 14 are of the same size).
To evaluate the computational cost of this method, it is
assumed that the impulse response 10 is partitioned into M
blocks 14 of N samples each, where M is an integer and N
is an integer power of two (the impulse response 10 can be
zero-padded as necessary to satisfy this condition). Let T be
the length of the impulse response 10, so that:

T=M'N

The total cost is the sum of the individual costs of each block
convolution, corresponding to each branch 18 in parallel
structure 12.

As described above, FFTs of 2N real points are necessary
when using the overlap-save method, and there are M
branches 18. The direct FFT on 2N input samples is shared
by all convolution branches 18, so only one input FFT is
needed, requiring 2k-[1+log(N)] multiply-adds. Each branch
18 performs a spectral multiply of N complex points,
including 4N real multiplies and 2N real adds, between the
input spectrum and the filter frequency response. Each
branch 18 then performs a 2N-point inverse FFT on the
spectrum resulting from the multiply. The block of N
samples resulting from the inverse FFT of each branch 18 is
overlap-added to the output buffer with the corresponding
delay, requiring N adds.

This process generates N output samples. The total cost
per output sample of multiple-block convolution is as fol-
lows:
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6

cost(Multiple-Block)=cost(FFT)+M-cost(Spectral Multiply)+
M-cost(FFT™)+M-cost(Overlap-Add)

or

cost(Multiple-Block)=24] 1+log(N) |+ 4M+2kM[ 1 +Hlog(V) +M=2k(1+
M)[1+log(N)]+5M

or
cost(Multiple-Block)=2&(1+T/N)[1+log(N) +5T/N

FIG. 2 illustrates the cost (using a logarithmic scale) of
multiple-block convolution as a function of N, for T=65,536
(or 2'°) and k=3/2. This curve is meaningful only for values
of N which are integer powers of two, due to the use of the
FFT algorithm. For a given filter length T, the computational
cost increases as N decreases. In other words, the more
blocks 14 impulse response 10 is partitioned into (the
smaller N is and the larger M is), the more expensive the
convolution. The cost is minimum when there is no partition
at all (when a single-block convolution is used). When
impulse response 10 is partitioned into four blocks 14, the
cost is about two and a half times the minimum cost.
Therefore, splitting the impulse response 10 into shorter
blocks 14 helps reduce the latency, at the price of increasing
the computational cost.

Frequency-domain Delay Line (FDL) Convolution

At each input block cycle, each branch 18 of the multiple-
block structure 12 illustrated in FIG. 1 performs a spectral
multiply of the input block FFT by the filter frequency
response (the FFT of the corresponding impulse response
block 14), performs an inverse FFT on the multiplied
spectrum, and overlap-adds its delayed sample block to the
output buffer (which can be viewed as a delay line).
Therefore, if there are M branches 18, M inverse FFTs need
to be performed at each input block cycle. Since the block
partition is uniform, all delays are integer multiples of the
block size, which is an integer power of two. Therefore, the
overlap-added sample blocks may be perfectly aligned; in
other words, the output block of branch “n” at time “k” may
have a complete overlap with the output block of branch
“n-1" at time “k+1”.

Therefore, in one embodiment, there is no need to
overlap-add the branch outputs in the time-domain and thus
no need to perform the inverse FFT on each branch before
the overlap-add operation. Instead, the multiplied spectra of
each branch can be overlap-added to the output buffer. At
each input block cycle, only one output block of samples is
needed. This block of samples is the one corresponding to
the first FFT block in the output buffer, which will be
referred to as a “frequency-domain delay line” since the data
circulating through it is in the frequency domain.

FIGS. 3 and 4 illustrate an exemplary block structure 20
for multiple-block convolution and an exemplary block
structure 22 for frequency-domain delay line (FDL)
convolution, respectively. Unlike block structure 20, only
one inverse FFT needs to be computed per input block cycle
using block structure 22. Therefore, block structure 22 for
FDL convolution provides great computational savings over
structure 20. Regardless of the number of blocks 14 into
which the response 10 has been partitioned, only one direct
and one inverse FFT are needed per output sample block
when using FDL convolution and associated structure 22
(unlike multiple-block convolution using block structure
20). This represents a significant computational cost savings
and provides an important technical advantage of the present
invention.
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The following equations show the computational cost of
FDL convolution and compare it to that of multiple-block
convolution. Again, it is assumed that impulse response 10
is partitioned into M blocks 14 of N samples each, where M
is an integer and N is an integer power of two. Therefore, the
length of the impulse response is:

T=M'N

In one embodiment, the processing steps are as follows. The
direct FFT on 2N input samples is shared by all convolution
branches, so only one input FFT is needed, requiring 2k-
[1+log(N)] multiply-adds. Each branch performs a spectral
multiply of N complex points (4N real multiplies and 2N
real adds) between the input spectrum and the filter fre-
quency response. The block of N complex points resulting
from the spectral multiply of each branch is overlap-added
onto the output buffer (which is the frequency-domain delay
line) with the corresponding delay, requiring 2N real adds.
Therefore, this step includes 4N operations. One inverse
FFT is then performed on the block heading the frequency-
domain delay line. This process generates N output samples.
The total cost per output sample of this process is as follows:

cost(FDL)=cost(FFT)+M-cost(Spectral Multiply-Add)+cost(FFT*)
or

cost(FDL)=2k log(2N)+4M+2k log(2N)=4k+4k log(N)+4M

or

cost(FDL)=4k+4k log(N)+4T/N

FIG. § illustrates the computational cost of FDL convo-
lution as a function of N, where T=65,536 and k=3/2. Due
to the use of the FFT algorithm, this curve is meaningful
only for values of N which are integer powers of two. For
a given filter length T, the computational cost of FDL
convolution does not vary monotonically, but has a mini-
mum at a value of N which is smaller than T. There exists
an optimal block length for the uniform partition, which is
generally (depending on the value of k) smaller than T. In
other words, the basic block convolution with N=T is not
optimal, and there exists a value of N smaller than T for
which the convolution is computationally cheaper using the
FDL convolution technique.

FIG. 6 illustrates the cost (using a linear scale) of FDL
convolution as a function of N in greater detail. For N=T,
FDL convolution is equivalent to single-block convolution.
In one embodiment, regardless of the block length N, FDL
convolution performs only one direct and one inverse FFT
per output sample block. As the block length N decreases,
the cost of the FFT algorithm decreases since shorter FFTs
are computed. However, the cost of the spectral multiply-
adds increases since the number of blocks M increases. For
values of N starting at T and decreasing, the FFT cost is the
dominant cost component and the curve approaches a mini-
mum (at which N is optimal). If N continues to decrease
beyond its optimal value, the cost of the spectral multiply-
adds becomes the dominant cost component and the total
cost grows significantly.

The following equations may be used to determine the
value of N for which the curve is minimum. The cost
function of N is as follows:

cost(FDL)=4k+4k log(N)=4T/N=4k+4k1n(N)/1n(2)+4T/N

Setting the derivative of the cost with respect to N to zero,
the following expression is obtained:
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For a typical value of k=3/2, the optimal block length, N,
is equal to 0.462 T, which yields N=30,284 if T=65,536.
However, only values of N which are integer powers of two
are meaningful. Therefore, either N=16,384 (2'*) or N=32,
768 (2*%) should be chosen. By inspection of the curve plot
of FIG. 6, it is clear that N=32,768 provides the minimum
cost. Therefore, in one embodiment the minimum cost of
FDL convolution is as follows:

65,536

4
cost(FDL) = 6 + 6log(32,768 ) +
32,768

=104 madds

In comparison, the cost of the basic overlap-save method
where N=T=65,536 is as follows:

cost(overlap-save)=6+(6-16)+4=106 madds

Therefore, for k=3/2, FDL convolution is slightly cheaper
than single-block convolution. If the available FFT algo-
rithm is less efficient (k>3/2), then FDL convolution can be
considerably cheaper. Furthermore, a slightly higher com-
putational cost would in many cases still be desirable in
exchange for smaller input to output latency. In terms of
latency, FDL convolution performs better than multiple-
block convolution, which is the next best convolution tech-
nique in terms of latency. FIG. 7 illustrates the computa-
tional cost as a function of N of both FDL convolution and
multiple-block convolution for k=3/2 and T=65,536.

When many independent convolutions are computed in
parallel and their outputs are mixed, as is the case in
three-dimensional audio applications when several acoustic
sources are rendered, the efficiency improvement of FDL
convolution with respect to multiple-block convolution is
even greater. This is at least in part because the mixing can
be performed in the frequency domain when using FDL
convolution. Therefore, instead of computing an inverse
FFT for each source, only one inverse FFT is computed after
the outputs of the sources are mixed. In this case, each
convolver performs a direct FFT on its input block, followed
by the spectral multiply-add onto the output buffer. Then, no
inverse FFT is performed by the convolver, but the spectral
N-complex-point block heading the FDL is communicated
to a mixer or other appropriate destination, which adds all
incoming spectral blocks and performs one inverse FFT on
the result to obtain the output samples. The cost of the
inverse FFT is thus spread among all convolvers in parallel.

In this scenario, the mixer is mixing spectral blocks of N
complex points (2N adds) rather than sample blocks of N
real points, so there is one additional operation per output
sample of the mixer. However, this is an insignificant
additional cost since this one operation is also spread among
all convolvers in parallel, and therefore it is ignored in the
following cost calculations. For example, if ten T-point
convolutions were performed in parallel, the cost per output
sample of each convolver would be:
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cost(FDL)=2k log(2N)+4M+(1/10)2k log(2N)
or

cost(FDL)=2.2k+2.2k log(N)+4T/N

FIG. 8 illustrates the computational cost as a function of
N for multiple-block convolution, FDL convolution with
mixing in the time domain, and FDL convolution with
mixing in the frequency domain (when ten convolutions are
performed in parallel). For values of N smaller than 256, the
cost of the spectral multiply-adds (the component “4T/N”) is
the dominant cost component and thus FDL convolution
with frequency-domain mixing is not significantly cheaper
than FDL convolution with time-domain mixing. However,
for values of N>512, FDL convolution with frequency-
domain mixing is significantly cheaper.

Dual-FDL Convolution

The FDL convolution method performs better than the
multiple-block method, but its cost curve still grows signifi-
cantly when N becomes small compared to its optimal value.
Often input to output latency (and thus the block length N)
are required to be relatively short, and in those conditions
FDL convolution is not optimal. For example, if the latency
specification requires a block length of N=128 and the filter
length were T=65,536, then the cost would be 2,096
multiply-adds, whereas the cost for an optimal block size
(N=32,768) is only 104 multiply-adds. The problem is that,
due to the latency specification, N is made too small
compared to the optimal N and the cost of the spectral
multiply-adds dominates the total computational cost.
Therefore, the FDL convolution method is wasting its com-
putational power in order to satisfy the latency requirement.

The cost of multiple-block convolution using uniform
partitions also increases significantly when a small block
length is used. One solution that has been suggested to lower
the cost of multiple-block convolution is to use non-uniform
partitioning, with blocks of increasing size. However, this
solution would not work with FDL convolution, since FDL
convolution uses uniform partitions to take advantage of the
FDL by overlapping FFT blocks to reduce the number of
inverse FFTs. More efficient FDL convolution may be
obtained by partitioning the impulse response 10 into a
header FDL of short blocks to satisfy the latency
requirement, followed by a second FDL of longer blocks to
keep the cost at a relatively low level (by preventing the
spectral multiply-adds from dominating the cost
calculation).

FIG. 9 illustrates such dual-FDL convolver partitioning.
The header FDL 32 is composed of blocks 34 of N samples
each, where N is specified by the latency specification. The
second FDL 36 is composed of blocks 38 of B samples each,
where B is a variable selected to optimize the convolution
process. As described below, in one embodiment a value of
B is determined for which the computational cost is mini-
mum. B is constrained to be an integer multiple of N, and T
can be made an integer multiple of B by zero padding if
necessary.

The cost of header FDL 32 is:
cost(FDL,)=4k log(2N)+4B/N
The cost of second FDL 36 is:

cost(FDL,)=4k log(2B)+4[(T/B)-1]

since there are [(T/B)-1] blocks 38 of B samples in second
FDL 36.
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The total cost of the dual-FDL convolution is the sum of
these individual costs:

cost(Dual-FDL)=4k log(2N)+4B/N+4k log(2B)+4[(T/B)-1]

The value of B can be chosen so as to minimize cost, and N
is specified by the latency specification. Both N and B take
discrete values since they are constrained to be integer
powers of two. The optimal value of B can be determined by
setting to zero the derivative of the cost with respect to B,
as if B were a continuous variable, and then selecting the
discrete value of B adjacent the optimal continuous value,
for which cost is minimum. This calculation is performed as
follows:

_ 4 . 4k 4T
"N B2 B

or

0:(N-Bz)+(ln/((—2)-B]—

There are two solutions for this quadratic expression of the
continuous optimal value of B:

KN KN Y2 NT
kN N N2
T T 2m2) (Zln(Z)]

Only the first of these expressions yields a meaningful
solution for B, since the second one gives a negative value.
Furthermore, even though N and B are treated as continu-
ously variable values, only values which are integer powers
of two are meaningful, due to the use of the FFT algorithm.
Therefore, to find the actual optimal value of B, the cost is
evaluated at the two discrete points (which are integer
powers of two) around the optimal continuous B, and the
value for B is chosen for which the cost is minimum.

FIG. 10 illustrates the points 40 where B is optimal as a
function of N for T=65,536. In addition, a curve 42 of the
optimal continuous B is also illustrated for reference. The
cost of the dual-FDL convolution can then be evaluated for
each value of N, replacing B in the cost expression by its
optimal value. FIG. 11 illustrates the cost of dual-FDL
convolution as a function of N for k=3/2 and T=65,536 using
the optimal values of B.

FIG. 12 illustrates the cost of dual-FDL, single-FDL, and
multiple-block convolutions as a function of N, for T=65,
536 and k=3/2. This figure clearly shows that dual-FDL
convolution achieves the goal of keeping cost at a lower
level than the other two convolution techniques when low
latency (a small value of N) is desired. For values of N up
to 1,024, dual-FDL convolution performs better than single-
FDL convolution. In particular, for values of N smaller than
1,024 it performs significantly better. For N greater than
2,048, single-FDL convolution outperforms dual-FDL
convolution, but large values of N result in long input and
output latencies, which are unacceptable for many real-time
applications such as real-time audio or video applications.
Dual-FDL convolution successfully flattens out the compu-
tational cost curve for lower values of N. In summary, the
cost/latency ratio is improved by using two FDLs: one to
satisfy the latency requirement and the other to minimize
cost.

Multiple-FDL Convolution

In dual-FDL convolution, the first FDL satisfies the
latency requirement and the second FDL minimizes the cost.



US 6,625,629 B1

11

Therefore, dual-FDL convolution minimizes the cost given
its inherent constraint that only two FDLs are used. The
present invention expands the dual-FDL concept by parti-
tioning the impulse response into more than two FDLs, with
the first FDL satisfying the latency specification. This leads
to a multiple-FDL convolver that can attain lower compu-
tational costs with lower latency than the previously-
described convolution techniques.

FIG. 13 illustrates exemplary partitioning of an impulse
response 50 of length T into four FDLs 52a—52d that include
blocks 54a—54d, respectively, having block lengths of N1,
N2, N3 and N4. In one embodiment, the block length of
blocks 54 in a given FDL 52 may be any integer-power-of-
two multiple of the block length of the preceding FDL 52.
Also, an FDL 52 may have any appropriate number of
blocks 54. For a given filter length and latency specification,
the following variables are chosen: the number of FDLs 52
into which impulse response 50 is partitioned, the block
length of each FDL 52 (except perhaps the first one, which
may be determined according to the latency specification),
and the number of blocks 54 included in each FDL 52. As
described more fully below, the present invention provides
a method to determine the values of these variables that
minimize the computational cost, given the latency specifi-
cation (which determines N1) and the filter length T.

Optimal Partition Finding Technique

The optimal-partition finding technique of the present
invention uses dynamic programming to automatically find
the block partition that minimizes the total computational
cost of multiple-FDL convolution. The following reasoning
lays the foundation for the process. For this description, it is
assumed that the filter impulse response is T samples long
and that the latency specification specifies that the block size
N1 of FDL 52a is N samples. If a pointer is moved through
the filter impulse response with a step of N samples, starting
with the first sample, the pointer will fall at positions which
are integer multiples of N. At each position of the pointer, all
possible “states™ of the partition will be described. The state
may be defined by the following two parameters for a given
pointer position: the size of the block 54 the pointer falls
within (for example, a block of 4N points), and the fraction
of the block 54 to which the pointer points. Since the pointer
advances with a step of N samples, it can point to the
beginning or to some intermediate fraction of a block. For
example, the pointer may point to the third quarter of a
4N-point block.

The following four constraints are imposed in this
example to determine the possible states and the possible
transitions between states. First, the block sizes must be
integer powers of two. Second, a block 54 of size S cannot
start with an offset smaller than S with respect to the
beginning of the filter impulse response. For example, a
1024-point block 54 cannot start before the 1024th sample
of the filter impulse response 50. Therefore, states with
block sizes equal to or greater than S cannot exist at pointer
positions smaller than S. Third, a block 54 of size S cannot
be followed by a block 54 having a size smaller than S. It
must be followed by a block 54 of size equal or greater than
S. The block size of the following block 54 can be the
product of S and any power of two. Thus, states with a block
size equal to S cannot transition into states of block size
smaller than S. Fourth, when the pointer falls on a fraction
of a block 54 which is not the last fraction of the block 54,
there is only one possible state that may follow. This
following state is the state where the pointer points to the
next fraction of the block 54. For example, a state with block
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size 4N and in which the pointer is on the second quarter of
the block must necessarily transition into the state with the
same block size and where the pointer is on the third quarter
of the same block 54.

FIG. 14 illustrates an exemplary table 60 of the possible
states for each pointer position 62, where each state is
characterized by a block size 64 and the fraction 66 of the
block 54 to which the pointer points. In this example, the
filter 50 is assumed to have a length of T=8N samples. The
notation used to identify states is as follows: a state ID 68
having the notation “(S.Q)” indicates that the pointer falls on
the Qth fraction of a block containing S fractions. Since the
fractions are of size N, a block 54 having S fractions has a
size of S'N. FIG. 15 illustrates an exemplary graphical
representation 70 of the possible states (with state IDs 72) at
each pointer position 74. Filter 50 is again assumed to have
a length of T=8N samples.

FIG. 16 illustrates the exemplary states 76 and possible
state transitions 78 for each pointer position 74. Each state
transition is associated with a computational cost. A transi-
tion 78 into a block of greater size, that is from a (X.X) state
76 into a (Y.1) state 76, where Y>X, is a transition 78 into
a new FDL 52. Therefore, its associated cost is the cost of
one FFT, one inverse FFT, and one spectral multiply-add,
and may be calculated as follows:

costX X—Y.1,Y>X)=4k log(2YN)+4

If multiple convolutions are performed in parallel and their
outputs mixed, this state transition 78 has a lower cost since
the inverse-FFT is performed by the mixer and thus the cost
is spread over all the convolvers in parallel. If P convolu-
tions are performed in parallel, the cost may be calculated as
follows:

2
cosi{X.X > Y.;Y>X)= (2+ I—J]klog(ZYN) +4

Furthermore, when a block 54 is followed by a block 54
that is twice as long, significant optimization can be
achieved by using the previously computed half-sized spec-
tra. This reduces the FFT cost by a factor slightly less than
two. For simplicity, the following cost analysis assumes that
this factor is equal to two. Therefore, if the transition 78 is
made to a block 54 twice as long as the current block 54, the
cost of the transition 78 is:

costX X—Y.1,Y=2X)=3k log(2YN)+4

However, for most cases the cost savings of using previously
computed half-sized spectra does not have a large amount of
influence on the cost, and often the optimal partition does
not include transitions 78 to blocks 54 twice as long (but
four times as long or greater). In other words, optimal
partition finding according to the present invention will
choose the same partition with or without the option of using
previously computed half-sized spectra.

A transition into a block 54 of equal size, that is from
(X.X) state 76 to (X.1) state 76, means that one more block
is added to the current FDL. Therefore, the associated cost
of this transition 78 is the cost of one spectral multiply-add:

costX X—X.1)=4

A transition 78 from a fraction of a block 54 into the
subsequent fraction of a block 54, for example, from (X.1)
state 76 to (X.2) state 76, has no associated cost.

For a long impulse response 50 and a low latency, there
are a large number of possible partitions and thus a large
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number of possible state sequences. The use of dynamic
programming techniques is an efficient way to determine the
sequence of states 76, and thus the partition, for which the
computational cost is minimum. The use of dynamic pro-
gramming techniques is well known in the art and will not
be described in detail. In short, the well-known Viterbi
algorithm may be used to find the optimal state sequence, the
algorithm evaluating (for each state 76 at a given pointer
position) the state sequence that leads to the present state 76
with the minimum computational cost. When the pointer
reaches the end of impulse response 50, the algorithm finds
the optimal state sequence by backtracking through the past
partially-optimized sequences. The optimal state sequence
corresponds to the partitioning of impulse response 50 into
multiple FDLs 52 that results in the lowest computational
cost.

FIG. 17 illustrates the computational cost as a function of
latency (N) of multiple-FDL convolution as compared to
dual-FDL convolution for T=65,536. For N=256 to N=2,
048, the costs of the two convolution techniques are the
same since the dual-FDL partition is the optimal partition
determined by the optimal partition finding technique. For
N>2,048, the uniform partition is the optimal partition, and
thus dual-FDL convolution is about twice as expensive. For
N<256, the optimal partition is relatively non-uniform and
thus multiple-FDL convolution performs significantly better
than dual-FDL convolution. Therefore, for low-latency con-
volutions (low values of N), multiple-FDL convolution is
the most efficient.

FIG. 18 illustrates an exemplary table 80 of the output of
optimal partition finding for a filter length of T=65,536
points and k=3/2. Each row corresponds with a particular
value of N (the latency), indicated in column 82. Each
column corresponds with a particular block size, indicated in
row 84. The numbers included in the table 80 indicate the
number of blocks 54 of each relevant block size that form an
optimal partition for a particular N. For example, in one
embodiment, the optimal partition for a latency of N=16 is
a sequence of four FDLs 52, where the first FDL 52 includes
four 16-point blocks 54, the second FDL 52 includes seven
64-point blocks 54, the third FDL 52 includes seven 512-
point blocks 54, and the fourth FDL 52 includes fifteen
4096-point blocks 54.

In some situations, in three-dimensional audio rendering
for example, the filter impulse response 50 may have “gaps™
or segments where impulse response 50 is zero. For
example, this may be the case when the filter models
low-order reflections of a large acoustic room where there
may be a significant amount of time between reflections.
During the time between reflections, the impulse response
50 of the room is null. This creates a significant waste of
computing power, since many of the samples would be
convolved by zeros.

However, the flexibility of the optimal partition finding
technique allows this problem to be addressed by adding an
additional rule for state transitions 78. In one embodiment,
if a state transition 78 is made to a state 76 whose corre-
sponding block 54 falls on a null part of the impulse
response 50, then the spectral multiply-add cost is subtracted
from the cost of this transition 78 since this operation will
not be necessary. Therefore, the optimal partition finder is
able to take into account the gaps of the impulse response 50
when finding the optimal partition. However, this strategy
may not be effective when finding a common optimal
partition for multiple parallel convolvers, since the gaps are
usually at different places of each convolver’s impulse
response 50.
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Furthermore, if null latency is desired, a header block may
be appended at the beginning of the filter partition and
convolved using the direct-form convolution. This strategy
can be utilized for any block convolution technique, and its
effect on the total cost is the same—a constant term equal to
the cost of direct convolution for the header block is added
to the cost curve.

The present invention, using multiple-FDL convolution
and optimal partition finding as described above, is more
efficient than previous methods for long convolution having
low latency. When multiple convolutions are performed in
parallel and their outputs are mixed, the present invention
outperforms previous convolution methods by an even
greater factor, which increases with the number of multiple
convolvers. This is at least in part because FDL-based
convolution allows the mixing to be done in the frequency
domain, significantly reducing the number of inverse FFTs
required as compared to other convolution methods. The
large reduction in the number of inverse FFTs is accom-
plished using a frequency-domain delay line (FDL), which
in one embodiment requires only one direct and one inverse
FFT per block of output samples.

Furthermore, the way in which the filter impulse response
50 is partitioned into different FDLs 52 with different block
sizes also has a substantial effect on computational cost. The
number of possible partitions can be very large for long
impulse responses 50, and thus the partition that minimizes
computational cost may be extremely difficult to determine
by inspection. Therefore, the present invention includes
optimal partition finding techniques that determine the opti-
mal partition by dynamic programming. These techniques
may be used at a control level to periodically update the
block partition in order to track optimality if the filter length
varies over time.

FIG. 19 illustrates a system 100 implementing multiple-
FDL convolution and optimal partition finding. System 100
includes a controller 102, a processor 104, an input buffer
106, and an output buffer 108 that may each be implemented
using any combination of hardware, software, or firmware
operating on one or more computer systems 120 at one or
more locations. In implementing the optimal partition find-
ing process and determining the impulse response 50 of a
selected filter, controller 102 determines the optimal
partition, partitions the filter impulse response accordingly,
and performs a DFT on each block 54 of the partition using
the FFT. Controller 102 communicates the DFTs to proces-
sor 104. A signal 110 to be processed (for example, a
sequence of audio or video samples) is received at input
buffer 106 and communicated to processor 104. Input buffer
106 may receive the input sample blocks from a signal
generation device, an analog-to-digital converter, another
signal processing component, or any other appropriate com-
ponent or device. Signal 110 may be communicated to
processor 104 from input buffer 106 in the form of blocks of
samples of signal 110.

Processor 104 implements single-, dual-, or multiple-FDL
convolution as described above. For each FDL, processor
104 receives an input sample block of an appropriate size
from input buffer 106 and the DFTs of the impulse response
blocks 54 from controller 102. Processor 104 determines the
DFT of the input sample block using an FFT algorithm and
performs a spectral multiplication of the DFT of the input
sample block with the DFT of each impulse response block
54. For each FDL, processor 104 then overlap-adds the
spectral blocks resulting from the spectral multiplication to
form a complete output spectral block (and typically one or
more incomplete output spectral blocks resulting from the
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overlap, which will be completed by subsequent overlap-
adds). Processor 104 performs an inverse FFT on the com-
plete output spectral block to create an FDL output sample
block for each FDL. If more than one FDL is used, the FDL
output sample blocks of the FDLs are overlap-added to
create a filter output sample block, which processor 104
communicates to output buffer 108 for communication to
another signal processing component, a digital-to-analog
converter, a signal reproduction device, or any other appro-
priate component or device. If a single FDL is used, the FDL.
output sample block is the filter output sample block.

If controller 102 and processor 104 are implemented in
software, they may be loaded and executed on a DSP, a host
general purpose chip, or any other appropriate component.
Controller 102 may be located in the same chip as processor
104, or they may be located in separate chips that commu-
nicate with each other. In an exemplary embodiment, con-
troller 102 is implemented in software executing on a host
chip and processor 104 is implemented in software execut-
ing on a DSP. Controller 102 may not need to be executed
as often as processor 104, since the filter impulse response
50 may vary slowly over time and thus the frequency
response does not need to be calculated for every block. If
the filter impulse response 50 is constant, controller 102 may
execute only once during the initialization of system 100.

Although the present invention has been described with
several embodiments, numerous changes, substitutions,
variations, alterations, and modifications may be suggested
to one skilled in the art, and it is intended that the invention
encompass all such changes, substitutions, variations,
alterations, and modifications as fall within the spirit and
scope of the appended claims.

What is claimed is:

1. Asystem for signal processing using one or more filters,
comprising:

a controller operable to partition an impulse response of

a filter into a plurality of impulse response blocks and
to calculate a Discrete Fourier Transform (DFT) of
each impulse response block using a Fast Fourier
Transform (FFT) algorithm; and

a processor coupled to the controller operable to:

receive an input sample block comprising samples of a
signal to be processed;

receive the DFT of each impulse response block from
the controller;

calculate a DFT of the input sample block using an FFT
algorithm;

perform a spectral multiplication of the DFT of the
input sample block with the DFT of each impulse
response block;

overlap-add the blocks resulting from each spectral
multiplication to create an output spectral block;

perform an inverse FFT on the output spectral block to
create an output sample block; and

communicate the output sample block.

2. The system of claim 1, wherein the controller is
operable to partition the impulse response into a frequency-
domain delay line (FDL) comprising blocks of uniform size.

3. The system of claim 1, wherein the controller is
operable to partition the impulse response into a first
frequency-domain delay line (FDL) comprising blocks of a
first size and a second FDL comprising blocks of a second
size.

4. The system of claim 3, wherein:

the size of the blocks comprising the first FDL is deter-

mined according to a latency requirement; and

the number of the blocks comprising the first FDL and the

number and size of the blocks comprising the second
FDL is determined so as to minimize computational
cost.
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5. The system of claim 3, wherein the second block size
is equal to

—kN + (—kN ]2 +NT
T 2In2) 2In(2) ’

rounded to an integer power of two, where k comprises a
proportionality constant, N comprises the first block size,
and T comprises the length of the impulse response.

6. The system of claim 3, wherein the processor is further
operable to:

receive a first input sample block for the first FDL and a

second input sample block for the second FDL;
receive the DFT of each impulse response block from the
controller;

calculate a DFT of the first and second input sample

blocks using an FFT algorithm;

perform a spectral multiplication of the DFT of the first

input sample block with the DFT of each impulse
response block of the first FDL;

perform a spectral multiplication of the DFT of the second

input sample block with the DFT of each impulse
response block of the second FDL;

overlap-add the blocks resulting from each spectral mul-

tiplication to create a first output spectral block for the
first FDL and a second output spectral block for the
second FDL;

perform an inverse FFT on the first and second output

spectral blocks to create a first output sample block and
a second output sample block;

overlap-add the first and second output sample blocks to

create a filter output sample block; and

communicate the filter output sample block.

7. The system of claim 1, wherein the controller is
operable to partition the impulse response into a first
frequency-domain delay line (FDL) comprising blocks of a
first size, a second FDL comprising blocks of a second size,
and one or more additional FDLs each comprising blocks of
any size.

8. The system of claim 7, wherein:

the size of the blocks comprising the first FDL is deter-

mined according to a latency requirement;
the number of the blocks comprising the first FDL is
determined so as to minimize computational cost; and

the number and size of the blocks comprising the second
FDL and the one or more additional FDLs is deter-
mined so as to minimize computational cost.

9. The system of claim 7, wherein the processor is further
operable to:

receive an input sample block for each FDL and the DFT

of each impulse response block from the controller;
calculate a DFT of each input sample blocks using an FFT
algorithm;

perform a spectral multiplication of the DFT of each input

sample block with the DFT of each impulse response
block of the respective FDL;

overlap-add the blocks resulting in each FDL from the

spectral multiplication to create an output spectral
block for each FDL,;

perform an inverse FFT on each output spectral block to

create an output sample block from each output spectral
block;

overlap-add the output sample blocks to create a filter

output sample block; and

communicate the filter output sample block.
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10. The system of claim 7, wherein the controller is
operable to partition the impulse response into the FDLs
using an optimal partition finding process, the controller
operable to:

define a plurality of states;
determine the possible transitions between the states;

calculate the computational cost of the transitions
between the states; and

determine a state sequence that minimizes the computa-
tional cost using a dynamic programming technique.
11. The system of claim 10, wherein the controller is
further operable to:

define a state according to the position of a pointer with
respect to the blocks of the FDLs, the position of the
pointer defined by the size of the block indicated by the
pointer and the fraction of the block indicated by the
pointer; and

determine the possible transitions between the states

according to at least the following constraints:

a block of size S cannot start with an offset smaller than
S relative to the beginning of the impulse response;

ablock of size S cannot be followed by a block of a size
smaller than S; and

when the pointer indicates a fraction of a block other
than the last fraction, the state that is transitioned to
must be the state in which the pointer indicates the
next fraction of the block.

12. The system of claim 10, wherein the controller is
operable to determine a state sequence that minimizes the
computational cost using the Viterbi algorithm.

13. The system of claim 1, further comprising:

a plurality of filters each associated with a separate signal
to be processed, the processor creating an output spec-
tral block from an input sample block of each signal
using the DFT of the filter impulse response associated
with each signal; and

a mixer operable to add the output spectral blocks asso-
ciated with the signals and to perform an inverse FFT
on the sum of the output spectral blocks.

14. A method for signal processing using one or more

filters, comprising:

partitioning an impulse response of a filter into a plurality
of impulse response blocks;

calculating a Discrete Fourier Transform (DFT) of each
impulse response block using a Fast Fourier Transform
(FFT) algorithm;

receiving an input sample block comprising samples of a

signal to be processed;

calculating a DFT of the input sample block using an FFT

algorithm;

performing a spectral multiplication of the DFT of the

input sample block with the DFT of each impulse
response block;

overlap-adding the blocks resulting from each spectral

multiplication to create an output spectral block; and
performing an inverse FFT on the output spectral block to
create an output sample block.

15. The method of claim 14, wherein partitioning the
impulse response into a plurality of blocks comprises par-
titioning the impulse response into a frequency-domain
delay line (FDL) comprising blocks of uniform size.

16. The method of claim 14, wherein partitioning the
impulse response into a plurality of blocks comprises par-
titioning the impulse response into a first frequency-domain
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delay line (FDL) comprising blocks of a first size and a
second FDL comprising blocks of a second size.
17. The method of claim 16, further comprising:
determining the size of the blocks comprising the first
FDL according to a latency requirement; and
determining the number of blocks comprising the first
FDL and the number and size of the blocks comprising
the second FDL so as to minimize computational cost.
18. The method of claim 16, further comprising setting the
second block size equal to

KN
2In(2)

kN (

2
——21n(2)+ ] +NT ,

rounded to an integer power of two, where k comprises a
proportionality constant, N comprises the first block size,
and T comprises the length of the impulse response.

19. The method of claim 14, wherein partitioning the
impulse response into a plurality of blocks comprises par-
titioning the impulse response into a first frequency-domain
delay line (FDL) comprising blocks of a first size, a second
FDL comprising blocks of a second size, and one or more
additional FDLs each comprising blocks of any size.

20. The method of claim 19, further comprising:

determining the size of the blocks comprising the first

FDL according to a latency requirement;
determining the number of blocks comprising the first
FDL so as to minimize computational cost; and
determining the number and size of the blocks comprising
the second FDL and the one or more additional FDLs
S0 as to minimize the computational cost of the method.

21. The method of claim 19, wherein partitioning the
impulse response into the FDLs comprises partitioning the
impulse response using an optimal partition finding process
comprising:

defining a plurality of states;

determining the possible transitions between the states;

calculating the computational cost of the transitions

between the states; and

determining a state sequence that minimizes the compu-

tational cost using a dynamic programming technique.

22. The method of claim 21, wherein the optimal partition
finder process further comprises:

defining a state according to the position of a pointer with

respect to the blocks of the FDLs, the position of the
pointer defined by the size of the block indicated by the
pointer and the fraction of the block indicated by the
pointer; and

determining the possible transitions between the states

according to at least the following constraints:

a block of size S cannot start with an offset smaller than
S relative to the beginning of the impulse response;

ablock of size S cannot be followed by a block of a size
smaller than S; and

when the pointer indicates a fraction of a block other
than the last fraction, the state that is transitioned to
must be the state in which the pointer indicates the
next fraction of the block.

23. The method of claim 21, wherein the optimal partition
finder process further comprises determining a state
sequence that minimizes the computational cost using the
Viterbi algorithm.

24. The method of claim 14, further comprising:

providing a plurality of filters each associated with a

separate signal to be processed;
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creating an output spectral block from an input sample
block of each signal using the DFT of the filter asso-
ciated with each signal;

adding the output spectral blocks associated with the
signals; and

performing an inverse FFT on the sum of the output

spectral blocks instead of on each output spectral block.

25. Digital signal processing software embodied in a

computer-readable medium and operable to perform the
following steps:

partitioning an impulse response of a filter into a plurality
of impulse response blocks;

calculating a Discrete Fourier Transform (DFT) of each
impulse response block using a Fast Fourier Transform
(FFT) algorithm;

receiving an input sample block comprising samples of a
signal to be processed;

calculating a DFT of the input sample block using an FFT
algorithm;

performing a spectral multiplication of the DFT of the
input sample block with the DFT of each impulse
response block;

overlap-adding the blocks resulting from each spectral
multiplication to create an output spectral block; and

performing an inverse FFT on the output sample block to

create an output sample block.

26. The software of claim 25, wherein partitioning the
impulse response into a plurality of blocks comprises par-
titioning the impulse response into a frequency-domain
delay line (FDL) comprising blocks of uniform size.

27. The software of claim 25, wherein partitioning the
impulse response into a plurality of blocks comprises par-
titioning the impulse response into a first frequency-domain
delay line (FDL) comprising blocks of a first size and a
second FDL comprising blocks of a second size.

28. The software of claim 25, wherein partitioning the
impulse response into a plurality of blocks comprises par-
titioning the impulse response into a first frequency-domain
delay line (FDL) comprising blocks of a first size and a
second FDL comprising blocks of a second size, and one or
more additional FDLs each comprising blocks of any size.

29. The software of claim 25, further operable to:
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provide a plurality of filters each associated with a sepa-
rate signal to be processed;

create an output sample block from an input sample block
of each signal using the DFT of the filter associated
with each signal;

add the output sample blocks associated with the signals;
and

perform the inverse FET on the sum of the output sample
blocks instead of on each output block.

30. A method comprising:

receiving an input sample blocks;

partitioning an impulse response of a filter into a plurality
of blocks, the impulse response having a length of
65,536 samples, and a first of the blocks into which the
impulse response is partitioned being less than 1024
samples in size; and

using a Fast Fourier Transform with a proportionality
constant equal to 1.5 to convolve the input sample
block with the impulse response of the filter using less
than 400 multiply-adds.

31. A method comprising:

receiving an input sample block;

partitioning an impulse response of a filter into a plurality
of blocks, the impulse response having a length T, and
each of the plurality of blocks into which the impulse
response is partitioned having a size N; and

using a proportionality constant k to convolve the input
sample block with the impulse response of the filter
using 4k+4k log(N)+4T/N multiply-adds.

32. A method comprising:

receiving an input sample block;

partitioning an impulse response of a filter into a first and
second set of blocks, the impulse response having a
length T, each of the blocks in the first set of blocks
having a size N, each of the blocks in the second set of
blocks having a size B; and

using a proportionality constant k to convolve the input
sample block with the impulse response of the filter
using; 4k log(N)+4B/N+4k log(2B)+4[(T/B)-1]
multiply-adds.



