
DIGITAL EQUALIZATION USING FOURIER 2694 (B-2)

TRANSFORM TECHNIQUES

Barry D. Kulp

Zoran Corporation

Needham Heights, Massachusetts

Presented at AuD,O
the 85th Convention
1988November 3-6
LosAngeles

Thispreprinthasbeenreproducedfromtheauthor'sadvance
manuscript,withoutediting,correctionsorconsiderationby
theReviewBoard.TheAES takesnoresponsibilityforthe
contents.

Additionalpreprintsmaybe obtainedby sendingrequest
and remittanceto theAudioEngineeringSocie_ 60 East
42ndStreet,New York,New York10165,USA.

Allrightsreserved.Reproductionof thispreprint,or any
portionthereof,is notpermittedwithoutdirectpermission
fromtheJournalof theAudioEngineeringSociety.

AN AUDIO ENGINEERINGSOCIETY PREPRINT

DZalTAL !_U_TZON US.I_G]rouRz!m TRANSI_RM 'I_CHNZQUIS

Beu,ry D. Kulp
Zoz,an Coz,poet.ton

Needlma !lmAglttm, Mmmmm_ummt_m

&be_L'ttCt

EquaLizat/on ue_g time domain digital convolution

becomes Increasingly computat/onally tntens/ve as _npulse

response length increases. Fourier transform techniques

greatly reduce the computational load. The corresponding

theory la reviewed, and various applicat/ons are detailed,

including room, loudspeaker, :Lnstrumant, and ambience

equa_zation. A practical real-time implementation using

an off-the-shelf digital signal process:Lng integrated

c:Lrcu_t :Lm described. Theoret/cal and practical !_t/ons

of the applications and _mplementation are discussed.

INTRODUCTION

In tb/s paper, we w_l/ explore both techn/ques and appltcattons for

parfo_ng dtgttel eq__l_!zat/on using Four:Let transform theory. Some of the

appltcat/ons are ones that are not common/y thought of when the term

"equa/_zat/on" :Lsused, which we normally think of as Just man/pulatlon of

frequency spectrum character:Let/cs, or f_/tertng. For example, we w:Lll look

at "ambience equa//zatlon", which we w]J/ take to mean manipulat/on of

arab:Lent, or reverberant, characteristics. TB_is man/pulat/on can :Lnclude both
the cancellation of a roomts undesirable amb/ent charactertst/ce and/or the

creation of a desired ambient response.

All of the applications to be described, from ehnple filtering to reverb

generation, can be achieved tn the dig/tal domain us:Lng time domain

(1)

convolution techn/ques. However, in many cases, the amount of computation

required to perform the convolution d/rectiy in the time domain would be

prohtbittve, relative to practical constraints of processing ttme and/or

hardware cost. Fortunately, frequency domain processing provides a solution

that greatiy reduces the computational load involved in performing these
convolutions.

It will be assumed that the reader has some basic knowledge of digital
signal proceeaing: that aignaie can be sampled, that the samples can be

combined using delay registers, multipliers and adders in some way to do

f_ltering, and that Fourier transforms exist and that they transform a signal

from its time domain representation (the samples) to the frequency domain (a

sampled spectrum) in a manner similar to the Laplace tranaforma of analog

signs/ processing. Bu/lding on tb/s basic knowledge, we wi// briefly review
digital convolution and the FirSts Impulse Response (FIR) filter structure.

From there we wi]/ explore the theory behind using Fourier transforms to

perform "fast convolution", greatly reducing the computations/ load aa
promised.

After exploring the theory, we wi]/ then look at some of the many

appkicationa using these techniques. Next, we wi/1 look at a hardware

solution enab3/ng real-thae implementation of the algorithms involved.

Finally, we w]/1 examine some of the lhnitatione and problems encountered in

both the applications and the implementation, and discuss some ways to solve
them.

CONVOLUTXON THEORY AND FILTER STRUCTURES

Normal/y, when one thinks of a f//ter, one conceptualizes it as a

change in the frequency domain characteristics (spectrum) of the signs/.

For example, a low-pass filter wi]/ allow the lower portions of the

spectrum to pass through from input to output, but not the h/gher

portions. However, due to the duality characteristics of the time and

frequency domains, we know that multiplication in the frequency domain is

equivalent to convolution in the time domain. In other worda, to f/lter a

signal with a filter having a certain frequency characteristic, the result

being a signal with a spectrum that ia the product of the spectra of the

input signal and the filter, we must convolve (in the time domain) the

(2)

input signal with the Impulse response of the filter. The impulse

response can be thought of as a signal whose spectrum ts the frequency
response of the filter.

In the continuous time domain (the analog world), we don't actually

set out to perform the convolution. Instead, we try to design a circuit

that has the desired frequency response (spectrum), which Just happens to

have a certain impulse response that we can measure, which it convolves

with any input signal, the result of which we can observe. So, while the

circuit is actually doing the convolution, we don't normally think of the

filter In that way. Instead, when we talk about the filter, we talk about

:its frequency-domain function, e.g. low-pass, high-pass, band-reject, etc.
Further evidence of this n_nd-eet is the fact that analog f£lter design

progr_uns ars designed to convert back and forth between spectral
characteristics and component values for resistors and capacitors in a

particular circuit topography, with the concept of impulse response not

always directly addressed (although some filter design packages will plot the

impulse response and/or the step response of the circuit).

However, in the discrete time domain (the digital world), tn addition to

thinking in terms of the frequency-domain function, we also often think tn

terms of convolutions and Impulse responses. This is evidenced by the

fact that digital filters are often described as infircLte-impulse-reeponse

(IIR) or finite-impulse-response (FIR). In fact, FIR filters are usually

implemented in such a way as to directly perform the convolution on the

Input samples by doing a sum-of-products calculation. Also, FIR filter

design programs convert back and forth between spectral characteristics

and impulse response coefficient values.

Nithin the realm of digital filtering, there are various tradeoffs

between the IIR and FIR filter structures. The advantages of FIR filters

include: absolute guarantee of stabfiity, well-behaved round-off error

characteristics, ab_.li_'_ to realize arbitrary frequency responses, linear

phase, etc. The disadvantages of FIR filters are basically Just delay
time (particularly If using the linear phase structure) and computational

load, which increases directly with Impulse response length, which in turn

grows as the "precision" of the filter :increases. By "precision", I am

referring to how closely the actual filter'sfrequency response varies
from an "Ideal" one, tn such areas as ripple and transition band width.

Typically, FIR filters are Implemented as a sum of products. This is

easily conceptualized ae follows: Because the f:ilteris a linear system, we

(3)

may use superpoeitton principles to manipulate our analysis of it. Consider

the input sequence as a sum of many different sequences, each one consisting

of all zeroes except for one unique point. In other words, the input to the

system is a sum of many different impulses, each with its own amplitude and

unique position in thne. Therefore, the output of the filter will be simply
a sum of many copies of the Impulse response, each one shifted to a unique

starting point in time, with a corresponding amplitude gain factor. If we

look at any given output 'point, we note that it will have contributions from

many of these various copies of the impulse response. In fact, if the length

of the hnpulse response (the number of points between the first anc% last

non-zero ones, inclusive) is N samples, then every input point wi]/ affect N

output points, and conversely the output at any point in time wi// be
affected by N input points (the current one and the N - 1 previous ones).

As a simple example, suppose the Impulse response ts only 3 samples

long, and their values are 0.4,0.3,0.2. This means that each input

point will contribute 0.4 times its own amplitude to the current output
point, 0.3 times to the next one, and 0.2 times to the following one.

Turn this around and we can see that each output point is the sum of 0.4

times the current input point, 0.3 times the previous input point, and 0.2

times the input point from 2 sample periods prior. The structure normally

used to implement this is shown in Figure 1. It demonstrates both of

these relationships: as each input potnt travels down the series of delay

taps, it w_J/ contribute first 0.4,then 0.3,and final/y 0.2 times its

own amplitude to the output value before being "forgotten"_ conversely,

the output is a sum of the 3 most recent inputs, with the weighting

factors correspond/ngly applied.

To repeat an important point for emphasis: the longer the impulse

response, the more multiplications and additions must be done in the same

amount of time, each sample period.

One thing to keep in mind about an FIR filter: it Is not necessarily a

"filter" in the normal sense of the term. It is, in fact, Just a circuit or

system that convolves an Input signal with some finite impulse response. The

impulse response, in turn, ie Just a series of delayed impulses, which create

a series of delayed copies of the original input signal, multip//ed by

various weighting factors (coefficients,or you could even call them gain

factors). Therefore, a sufficiently long FIR "filter" could perform

functions normally thought of as "delay-Line" functions, or be used to

realize any arbitrary impulse response for purposes other than what would

normally be called "filtering". Again, the only drawback Is the

(4)

computational load normally involved in Implementing long FIR filters.

All of this brings me to the main point of this paper: It Is

possible, using some mathematical trickery, to perform long FIR f//ter

functions with much less computational load than would normally be

requ/red using a direct sum-of-products Implementation. In the following
sections, we will explore these tricks, and some of the various functions

that can be performed with this structure.

FAST CONVOLUTION THEORY

In the preceeding section, we noted that the amount of computation that

must be performed in order to Implement an FIR filter structure grows in a

direct //near fashion with the length of the filter's impulse response: one
multiply and one add per filter tap per input point. Fortunately, FIR filters
with long Impulse response lengths may be performed with far less

computational overhead using Fourier transform techniques. The basic Idea

at work here is the exploitation of the transform theorem, which states that

"Convolution in the time domain is equivalent to multiplication in the
frequency domain."

In order to perform multiplication in the frequency domain, we must be

able to convert our signals back and forth between the time domain and the

frequency domain. In order to do this, we will use the Fast Fourier

Transform (FFT),the theory and development of which is beyond the scope of

this paper. Once we have used the FFT to convert our input signal and our

Impulse response to their frequency domain representations, we will muitiply

them together to obtain the frequency domain representation of our output
signal, and then perform an inverse FFT operation on that to obtain the time

domain output signal.

This sounds simple enough, but in order to properly exploit this

phenomenon, we must understand some additional concepts: the difference

between linear convolution and circular convolution, and the two methods that

may be used, overlap-and-add and overLap-and-discard. A/so, it must be shown

that this method, which certainly sounds more complicated than the direct

time-domain sum-of-products Implementation, is in fact more efficient in

terms of computational load than that method.

(s)

Linear convolution is what we normaliy think of first when we think of

convolution. It is what was described above in the "Convolution Theory and

Filter Structures" section. Each input point, when passed through the filter

and convolved with the impulse response, will contribute to N (where N is the

number of taps, or length, of the impulse response) output points, starting
with the one at the same time, and including N - 1 more following it. In

this case, we can assign a second meaning to the ?linear" in "linear
convolution". We can say that it also means that the output sequence

stretches out "linearly", i.e.in a straight line, in time following the end
of the input sequence.

Let's look at an example. Suppose the length of our "filter" is 100.

Therefore, each input point Will affect 100 points, the "current" one and the

99 ones following it. Another way to think of this is to say that the
impulse response starts at tO and goes to t99. Now, suppose we want to

"filter" an input signal that ts 400 samples long (from TO to T399). We know

that the output sequence wi// start at TO with a contribution from the Input
point at TO, but it wi/1 also stretch out timewise past T399. This ts

because the Input point at T399 will affect 100 output points, starting at
T399 and 99 more following it, out to T498. Overall, we can say that the 400

point input signal got "stretched" by 99 points by the "filter" to become a

499 point output signal. This is demonstrated in Figure 2.

Keeping that il1mind, let's examine what we cai/ "circular convolution".
This ts what happens when Fourier transform techniques are used to perform

convolutions. The basic problem is that the transform operates on a constant

number of points. That ts, if we do a Fourier transform on 400 input points,

we get a spectrum with 400 frequency "bins". If we then do an inverse

Fourier transform on those 400 bins (even if we did the multiplication by the

Fourier transform of the impulse response), we still end up with only 400

output points, not 499. What happened to the other 99 points? They ended up

getting wrapped around back to the beginning of the 400 point buffer, as

though it were a circular buffer with the end continuously spliced back to

the beginning. These 99 points got added to the first 99 points of the

output buffer, rendering both the beginning and the end of the signal invalid

(there is no way to separate them hack out, without lust recalculating the

whole thing a different way anyway).

To see how this circular convolution comes about, look at Figure 3.

Keep in mind that a finite duration Fourier series carries with it the

implicit assumption that it has sampled one period of a periodic waveform, aa

shown in Figure $a. Figure 3b shows the results of a linear convolution on

(6)

each of the periods of this implied periodic waveform. Note that the period

of the waveform is still 400 samples, but the length of each slice of it has

grown to 499 points. Therefore, the end of one slice overlaps the beginning

of the next slice. Figure 3c shows the actual resulting 400 point output

sequence. The extra 99 output points generated by the convolution have

extended over into the next implied period, and the first 99 output points

have been corrupted by the extended output of the preceeding implied period.

Since each implied period is identical, the net effect is that the extra

points generated past the end of the sequence get wrapped around, circular

buffer style, to overlap (and get added to) the beginning points of the output

sequence.

The eaay way to avoid the problems of circular convolution ie to use

Fourier transforms of a length that equals or exceeds the length of the

expected resulting output sequence. In the case of our example, we expect an
output of 499 points. Since we would like to maintain computational

efficiency, we want to use the FFT to do our transforms (as opposed to]uet a

direct form discrete Fourier transform). Since many FFT algorithms are based

on a radix that is a power of two, a 512 point FFT would make a lot of sense.

In order to use the longer length FFT, we simply need to append zeroes to the

input eignai to pad it to the proper length. Figure 4 shows th_tsbeing done.

Figure 4a shows the input signal, padded to length 512, and its FFT. Figure

4b shows the impulse response, padded to length 512, and its FFT. Figure 4c

shows the result of multiplying the two FFTe in order to get the FFT of the
output sequence, which ie then derived by performing an inverse FFT

operation.

This ie ail very convenient for operating on short, fintie duration

input sequences, but what happens if we have a signal that is practically
infinite (i.e.expected to go on for a very long time relative to the length

of the impulse reeponee) and we want to start getting results out now? Then
we break up the input signal Into shorter segments for hamediate processing.

This is where the techniques known as overlap-and-add and overlap-and-discard

get used.

The overlap-and-add method is the easier one to use to explain t6/s

concept, so that's where we'll start. To use the example we have been using,

suppose we have an impulse response with a length of 100 and we want to
segment the input sequence into chunks of length 400 and use FFTs of length

512 (actually,we will segment the input sequence into chunks of length 413

without any problem). We simply take each segment of the input sequence, pad

it out to length 512, and process it as before. Note that each chunk

(7)

produces an output that extends into the time of the next chunk. In this

region of overlap, we must add the results of the two overlapping segments to

get the actual values of the output sequence. What has happened ie th/s: we

have created a turn-on transient of invalid data (since it Is nttssing the

contribution from the final 99 points in the preceeding segment) and a

turn-off transient of invalid data (since it is only the oontribu_/on from

the preceeding points in this segment, and not the contribution from the

"current" points in the following segment). In between we only have 314

points of valid data. In order to get 413 valid output points from the 413

valid input points we started with, we must add the tatrn-offtransient from

one segment to the turn-on transient of the following segment in order to get

valid output points in the overlap region. This is shown in Figure 5.

The overlap-and-discard method is a little bit different from the

overlap-and-add method. It allows us to do basically the same thing without

having to do the extra add/t/on steps in the overlap region. This is done by

actually allowing circular convolution to occur. We still segment the input
sequence every 413 samples, but now we take a whole 512 point sequence to do

the processing on. As a result, we get 413 valid output points. The easy

way to picture tb/s is to realize that, by segmenting the input sequence in

th/s way, we produce a sequence that would be 611 points long if it were

linearly convolved: 99 points of turn-on transient, 413 points of valid

output, and 99 points of Turn-off transient. Since we are using a 512 point
FFT, cirou/ar convolution wi]/ cause the turn-on and turn-off transients to

overlap each other and become totally invalid. These 99 points get

discarded, leaving us with our 413 valid output points, without having to do

any addition in the overlap region (we did our overlapping in the input

segmentation and circular convolution). This is shown in Figure 6.

To conclude our discussion of the fast convolution technique, let's

examine the computational differences between this technique and the direct

time-doma/n sum-of-products convolution technique. To continue with our

example of a 413 point input sequence and a 100 point hnpulse response, it is

easy to see that, since we must do a multiply for each "tap" in the filter

for each output point we generate, we will do 51,200 multiplies, processing

in the time-domain (if we are very smart about not processing input points
that don't exist, we can get away with only 41,300 multiplies, or 100

multiplies per output point, the eame result we would have if we were Just

continually processing an "infinite" input sequence).

To see how much processing is needed in the frequency domain, we first

need to figure out how many multiplies are involved in doing a 512 point FFT.

(8)

If we Implement It In radix-2 form, we do 9 passes, 256 butterflies per pass,

and 4 multiplies (ac_uall,y one complex multiply) per butterfly, for a total
of 9216 multiplies. If we then say we have to do three FFTs, one on the

input sequence, one on the _,apulse response, and the Inverse one on the

result of multiplying the other two, we get 3 X 9216 - 27,648 multiplies. TT

we also do 512 complex multiplies to multiply the FFTs, we add 2048 real

multiplies for a grand total of 29,696 multiplies. This is not yet a very

dramatic Improvement.

Suppose, however, that we are processing a longer sequence (or a bunch

of shorter ones) with the same filter. Tn this case, we can pre-compute the

FFT of the Impulse response Just once and store it for use many t_nes, Jnst

Like we would store the Impulse response for the t_e domain convolution, and

not keep recalculating it from the filter design parameters for every sample.

This reduces our number of multiplies to 20,480. Okay, we_ve gotten down to

about 2 or 2.5 to 1 Improvement. Still not great.

There Is one final _provement we can make. Notice that we are
convolvtng a real signal with a real signal and getting real results. Notice

also that we are doing complex FFTs, which assume that the Input sequence may

bo complex. Well, if we convolve a complex Input signal with a real impulse

response, we get a complex output signal whose real part is the convolution
of the real part of the input sequence with the Impulse response, and whose

_naglnary part is the convolution of the _aaginary part of the input sequence

with the Impulse response. Note that the real and Imaginary parts stay

separate! (As long as the impulse response is real). We can exploit tMs by

actually processing two Input sequences at once (or two segments of a longer

input sequence), by loading one in as the real part and the other as the

imaginary part, doing complex FFTs and multiplies, and storing out the real

part of the result as the first output sequence, and the Imaginary part of

the result as the second output sequence. Therefore, the computational load

gets cut in half of what we Just computed, for a total of 10,240 multiplies

per 413 point input chunk. This is less than 25 multiplies per output point.

Now we have an Improvement of about 4 or 5 to 1!

The Improvement gets even more dramatic as the filter length increases.

As an example, suppose the impulse response is 16,385 samples long! Also

assume that we will be continually processing an essentially Infinite input

sequence and the FFT of the Impulse response w_J.l be pre-computed and stored.

The easy part of figuring out how to compare the two methods is to note that

the time-domain method takes 16,385 multiplies per output point. Tf we use

32K point FFTs, we can process 16,384 output points at once in the real part,

(9)

and another 16,384 output points in the imaginary part. To do so takes 2

FFTe (one forward and one inverse), each one 16,384 butterflies per pass, 15

passes, and 4 real multiplies per butterfly, for 983,040 per FFT. Twice that

is 1,966,080. Add another 131,0?2 to do the 32K point complex multiply, and

get a grand total of 2,09T,152 =ultiplies per 32,768 output points, or only
64 multiplies per output point. This represents an improvement of over 256
to l!

A s/milar analysis done for an impulse response length of 131,073 points

and using 262,144 point FFTs yields a result of only 76 multiplies per output

point, an Improvement of 1724.6 to ! over the time domain requirements.

Note that the computational load, which grows in a direct linear

relationship with filter length in the time domain method, grows very slowly

as the filter length Increases when using the frequency domain method. This

is a major advantage of frequency domain processing: it allows us to perform

certain tasks that we could not previously do tn the time domain under

specific practical constraints of computation time and hardware cost (e.g.

relatively Inexpensive real-time audio processing).

APPLICATIONS

In the following sections, we will discuss how these convolution

structures can be used to Implement various functions, starting with ordinary
filtering and including various functions other than what is normally thought

of as filtering. For example, a pattern of delayed Impulses, whibh can

emu/ate the early reflections of a room's ambient response, can be created

using convolution techniques. Ideally, this would provide no frequency

coloration, and therefore this would not normally be thought of as a filter,

but the FIR filter structure (Implemented as a fast convolution using Fourier
transform techniques) can be used to create it.

INSTRUMENT KOUAM:ZATZON

The first; application area we will look at is one that is simply a
filtering application. This application, which I will cai/ "instrument

(10)

equalization", is where frequency spectrum shaping is applied to a musical

instrument (or voice or any other sound) during recording or sound

reinforcement for the purpose of enhancing the sound in some (presumably)

desirable way. Typically this Is done by a graphic or parametric equalizer,

or by built in tone controls in the instrument itself. Recently, digital

equalizers have appeared on the market.

if this function were to be done utilizing the techniques presented

here, we could obtain all of the advantages of the FIR filter structure, and
avoid the disadvantage of greater computational load. The remaining

disadvantage, processing delay, will be addressed in the "Limitations and
Problems" section.

Calculating the impulse response, or filter coefficients, for a desired

frequency response is not a trivial matter, hut various techn/ques are well
documented in standard digital signal processing textbooks [1,2]and are

hnplemented in various filter design software packages available on the
market.

One trap to avoid f_!__ng into Is to think that one could implement the
filter directly in the frequency domain (and not bothering to calculate the

impulse response) by Just taking the FFT of the signal, multiplying it by the

desired frequency response, and taking the inverse FFT of the resUlt to

obt_ttn the f_/tered signal. The reason why this will not work in genera/ is

because of circular convolution. Any arbitrary frequency response that one

_Ltght apply in this manner will most likely transform (via inverse FFT) into

an impulse response that would occupy the full length of the FFT window. In

fact, a desired "ideal" frequency response would possibly have an infinitely
long impulse response, which would wrap around on itself in a circular buffer

manner as we//. At any rate, circular convolution would occur, with two

nasty side effects: the output would exhibit non-causal characteristics, in

the sense that the circular convolution of an input event that occurs late in

the FFT time window would cause a response to it to appear at an earlier time
in that window; and each boundary point between FFT windows woUld have a

splicing discontinuity, since the first point in a window would be affected

by the points at the end of that window, and not by the points at the end of

the previous window, at it should be for a proper]/near convolution.

Therefore, the beet way to proceed is to use the existing filter design

algorithms to create an impulse response of a certain length (and in the

process making the frequency response non-ideal) and then proceed as

described with an FFT window of longer length.

(i'm)

ROOM EQUALIZATION

Another application that we may use these techniques for is in the area

of room equalization. Traditionally, room equalization for sound reinforcement

has been done with either graphic equalizers (to generally "level" the

frequency response of the room) and/or parametric equa]/zere (to notch out

particularly troublesome resonances). Using long "filter" lengths, it is

possible to almost exactly elin_inatethe early reflections and resonances,
essentta//y "de-convolving" the early parts of the impulse response of the

room. This results in a greater clarity of sound, while preserving the

overall later reverberation characteristics. The increased clarity is a

result of the delay between the original "direct" sound and the onset of the

reverberant field, similar to the use of the "pre-delay" parameter found on

some digital reverb units on the market.

The basic problem here is to come up with some finite impulse response
that wtll perform the desired function. There are two ways to come up with a

solution. Both ways involve first sampling the Impulse response of the room

itself. Then, deternkine what early characteristics are undesirable and

window the impulse response to include only this early part of the impulse

response. We now have a finite impulse response that we wish to cancel We

must create another finite impulse response that will cancel it, i.e.will

create Just a single impulse when convolved with the previously windowed

impulse response of the room. Actually, this is impossible to do exactly,

since this "inverse" impulse response that we are trying to determine will

almost always be infinite in length. However, in practical terms, we can

a/most always deternttne some finite impulse response that will provide an

acceptable attenuation of the undesirable characteristics of the reverberant
field.

The first way to create this inverse impulse response ts to calculate it

by brute force. That is, take the windowed impulse response of the room and

try to reduce it to Just the original impulse by adding or subtracting time

shifted and amplitude scaled copies of itself in an iterative fasl_ton. The
coefficients that are determined as the amplitudes (and signs) of the shifted

copies become the inverse impulse response. Eventually, the error signal
that teac/ns uncorrected gets shifted out timewise and reduced in amplitude

to an accepLable degree.

The second way to create the inverse impulse response is to Lake the
Fourier transform of the windowed impulse response, take its inverse, and

(12)

perform an inverse Fourier transform to generate the inverse Impulse

response. In theory this works because multiplying the two transforms would
give a transform with a constant value of 1, which corresponds to a single

impulse when inverse transformed back to the time domain. In practice, this

procedure has one serious pitfall: circular convolution! That's right, we

are actually generating an inverse Impulse response that works when

CIRCULARLY convolved with the windowed impulse response. The only way to get

this to work for a linear convolution on a real signal is to minimize the

difference between the circular convolution and the //near convolution. To

do this, we must first have a windowed impulse response whose inverse, while

infinite in length, has some finite length beyond which there is some

acceptably min/mal amount of energy. The only way to determine this is

probably trial and error. Once a length has been chosen, pad the windowed

impulse response to that length with zeroes, then perform the transform,
inversion, and inverse transform. The result w411 be a finite length impulse

response that consists of the infinite inverse impulse response wrapped

around on itself tn a circular buffer fashion. Remember, though, that by

picking a sufficiently long transform, the "tails" of this impulse response

(the portions from distant times that got wrapped around) that cause error in

the cancellation have been kept to a minimum level. Now, to perform the fast

convolution on an actual signal (our normal operating condition after having

determined the inverse response}, we will of course have to use a transform

length that is even longer still.

LOUDSPEAKER EQUALIZATION

A recent trend in the hi-fi audio industry ls to make Aouaspea_ers with

increasing amounts of functionality integrated tn, such as self-powered

speakers or "digital" speakers that have a digital-to-analog converter (DAC),

powe r amp and volume control integrated in. It should now be possible to
build self-equalizing speakers as well, in order to provide the best

reproduction possible from a given driver. The idea here is to use the same

approach as described for "Room Equalization", tn which the impulse response

of the speaker is inverted for convolution with the actual input signal to be

reproduced.

Two basic application approaches present themselves here. The first ie

to sample the impulse response of the speaker (drivers and enclosure) tn an

anechoic chamber, compute the inverse, and permanently store it in the

(1S)

"brain" of the speaker when shipped from the factory, so that the speaker

system itself is as good as it can be. The other approach is to let the

consumer perform the "calibration" routine by placing a microphone at the

preferred listening location, plugglng it in to the speaker after

installation tn the preferred position, and pushing a button on the back of

the speaker, which causes it to run its own cal/bration routine. This way,

the combination of the speaker, its position, and _he room acoustics is

corrected for in the optimal way (again, limiting the length of the

cancellation so that it only has to correct for resonances, early

reflections, and frequency response variations, and not the entire

reverberant field of the room until the sound Is completely gone.

Note that this technique only corrects linear imperfections in the

speaker (resonances, reflection and diffraction effects, frequency response

variations) and not non-l/near effects such as harmonic and inter-modulation

distortions. Also note that it can only correct for a given listening

position (in the room mode) or axis (in the anechoic chamber mode) and can

not correct simultaneously for variations in room acoustics or axial

response.

AMBIENCE EQUALIZATION

One more application area we will look at, which ts the one that

requires the longest "filter" length, is that of ambience, or reverberation,

synthesis. In this case, the long "filter" impulse response would be the

pattern of reflections that make up the reverberant field. In this case, the

actual reverberation density, or number of reflections per unit time, could

be made as heavy or light as desired. The exact placement of every single

reflection could also be selected. Certain extra tricks could be played,

such as creating binaural pairs of impulses that would impart a more natural

directionality to each reflection, rather than Just producing "stereo"

reverb, with reflections occurring randomly on either the left or right

side. It would even be possible to "sample" the reverberant field of an

actual space for use. In the extreme, a binaural sample could be taken from

the "best seat in the house" for each of many stage positions. Each

instrument in a multi-track recording could be processed with a different

reverb sample, corresponding to its desired stage POsition, resulting in an

extremely real/eric aural image.

(14)

To really live up to the name "ambience equalization", and not Just
ambience generation, we could add the concept of "room equalization" and come
up with an tmpv/se response that would first de-convalve a room's own louaM

reverberant field, and then generate the desired ambient field. To do this,
we could either ftret generate the room-equa/tztng de-convolvtng Impulse

response by either of the two methods previously described, and then convolve
it with the desired ambient response; or we could cUrectiy generate it by the

brute force method previously described, where we would shift and scale the

room response in an iterative fashion to create the closest approximation to

the desired response, rather than the closest approximation to a dry impulse
as before.

REAL-TII_ IMPLEMENTATION

As we saw tn a preceeding section, using Fourier transform techniques to

perform fast convolutions great1M reduces the computational load compared to

performing the convolutions directly in the time domain. The question we

wish to address now is: is this lower computational load one that is

practical to implement? The answer ts very emphatically yesl

Taking the last example given tn the comparison of computational loads,

suppose we do have an impulse response of length 131,073. At any typical

digital audio sampling rate tn the range of of 44.1 to 48 or even 50 KHz,

thts woula represent a period of 2.6 to 2.97 seconds, enough for processing a

respectable reverb sample.

Assuming a 50 KHz sampling rate, we would have 20 ueec to perform the

calculations necessary for each output point. In the time domain, each

output point requires 131,073 multiplies (and adds). TI_tswould require

hardware capable of performing a multiply (and accumulate) in 152

plcceeconds! This te deftnttelM not practical with todaM'e technolog M.

However, in the frequency domain, we on1M requ/re 76 multiplies per

output point for this long impulse response. This only requires hardware

capable of performing a mu/tip1M in 263 nsec. Today's single chip digital

signal processing (DSP) microprocessors have typical multiplication cycle

times on the order of 100 nsec or less. This ts enough to eaeilM handie the

multiplication requirements, but the algorithm does require other processing.

(15)

For example, the racUx-2 but_cerfly in the FFT requires 6 ALU operations (adds

and subtracts) for each 4 multiply operations. Therefore, we need to find a

DSP integrated circuit (IC) that can process FFTs efficiently, I.e. use Its

multiplier most of the time, not letting it sit idle while the IC is busy
doing other flings.

One such family of DSP microprocessors is the Zoran fa_y of Vector
Signal Processors. With a clock rate of 25 MHz, the multiplication

throughput time is 80 nsec. Other parts of its arcb_itecture make it ideally
suited for processing FFTs and vector multiples. There ts a dual ALU

architecture embedded in the execution unit that allows the rad_x-2 butterfly

to be performed In only 4 clock cycles, rather than 6. There is a separate

bus interface unit that can perform bit-reversed addressing, and dual

Internal RAM sections that allow data v/o to be performed concurrently with

FFT execution. Another feature of the architecture is that it only uses one

external bus, for both instructions and data, and only uses It a fraction of

the time wh_le performing FFTo at full speed. Th_ts allows mnltiple
processors to share a common bus and still run in parallel without fighting

for bus time. Tn fact, FFT and vector multiply operations are both single
instructions in the instruction est!

As an example, the ZR34325, a S2-bit floating point Vector Signal
Processor, will perform a 1K complex point FFT (including all I/O and

bit-reversed addressing for data re-ordering) tn 1.732 msec, or about 21650

internal clock cycles (at 80 nsec). This FFT operation itself requires: (10

passes) X (512 but_cerflies/paes) X (4 multiplies/butterfly) = 20480

multiplies. This means that the '325 achieves almost 95_ utilization of the

multiplier bandwidth while performing an FFT. Th/s resnlts in an effective

multiplier throughput rate that is still under 100 nsec, which is more than

twice as fast as necessary for the example mentioned above.

The examples shown In Figures 7, 8, and 9 were performed on the ZR34161,
a 16 bit block floating point/integer member of the Zoran Vector Processor J

fam:I/M. Figure ? shows a short "bump" (representative of a percussive sound)

being convolved with a pattern of randomly scattered and weighted _mpnlses

(representative of an early reflection pattern tn a reverb application). This
example allows one to see very clearly the effect of the convolution in

creating the many duplicate copies of the input signs/. Figatre 8 shows a

rectangular pulse being convolved with a shorter triangular impulse response

so that the turn-on and turn-off transients may be clearly seen. Figure 9

shows the same thing as Figure 8, except the rectangular pulse input occupies
almost the entire length of the FFT. This allows us to see the results of

(16)

circular convolution very clearly, since the turn-on and turn-off transients

now overlap each other at the beginning of the output buffer area. All

three examples use FFTe of length 4096; only the real parts of the complex

signals are plotted (except Figure 9b, where the zero imaginary part is also

plotted to provide a reference baseline at O, since the real signal never

gets down that low, for easy comparison to Figure 8c), both the real and

imaginary parts of the FFTs in Figure ? are plotted.

LZMZTATZON8 AND PROBLEMS

As with any technique that appears to do great and wonderful things on

the surface (and reducing computational requirements by a factor of over 17OO

should certainly qualify as wonderful!), there are certain disadvantages
involved here.

The first disadvantage ts that of processing pipeline delay for

performing the FFT based convolution. In the time domain, we can have

Immediate results--an output point is calculated from the current and N - 1

most recent input samples. However, in the frequency domain, since we are

calculating blocks of output points by segmenting and overlapping the input

data, we introduce delay. In our lO0-tap filter example, we are talcing input

segments every 413 points. If we look at the first point in one of those

segments, we see that we can't start the processing for it until 412 more

input points have come tn. Then, there is more delay while we do the

processing--yes, we do very few multiplies per output point, but we have to

process the whole block at once, so we have a lot of multiplies to do before

we get the results that include that first output point that corresponds to

that first input point we were talking about.

For certain specific applications, this delay would be objectionable,

for instance tn sound reinforcement for live music, if the impulse response

used is long enough to create a noticeable delay. In other cases, a delay

wou/d not be a significant problem. Examples would Include: a self-equalizing

speaker for home use with a recorded or broadcast source, in which there is

no live action to refer to; or any sound reinforcement application using a

sufficiently short Impulse response, and therefore negligible delay.

Another interesting application area that wou/d not find the delay
objectionable is the digital audio workstation. Ae an example, suppose you

(17)

were experimenting with various reverbs on a track, or even doing "ambience

equalization" to fix a recording with bad source room acoustics. As long as

the processing was done at a rate that is at least as fast as the playback

rate, the pipeline de/ay would only add a few seconds to the "rewind time"

between playbacks with different settings. Since the processing is done in

digita/ scratchpad memory, any other tracks could easily be synced with the

delayed processed track. The reverbed track could be stored in another area

of scratchpad memory, so that subsequent playbacks of the same version would

have no extra delay. Compare this with other reverb approaches: typical

digital reverb techniques use several recirculating delays with

cross-feedback to create many reflections, but while this Is also easily done

in real time with relatively cost-effective hardware, the reflection patterns

are still synthetic and not rea/ samples of actual spaces; time-domain

convolution of a real reverb characteristic could also be done in software on

whatever microprocessor happens to be in the workstation, but it would be

excruciatingly slow when compiling a track with a new reverb characteristic

of any appreciable length.

In those applications where the delay is a problem, there is one obvious

solution that has its own other problem. If we simply reduce the number of

input and output points that we are processing in one chunk, we do reduce the

delay that comes from waiting for a whole lot more points. The problem is,

we still have to do the same amount of processing (using an FFT that is still

bigger than the length of the impulse response) for that smaller number of

points. Therefore, the computational advantage of fewer multiplies per point

is lessened.

In fact, it can be shown that the greatest computational advantage for a

given FFT size occurs when the number of points processed and the number of

filter taps are both approximately half the FFT size. For example, suppose

we are using 256 point FFTs and we convolve 128 input points with 129 taps.

The equ/valent number of multiplies in the time domain is 128 X 129 = 16512.

If instead we convolved 192 input points with 65 taps, the equivalent number

of time domain multiplies (using the same number of actual multipltes to do

the frequency domain processing) is only 192 X 65 = 12480. S_nilarly,

increasing the number of taps for the same length FFT reduces the number of

points that can be processed, a/so reducing the computational efficiency

advantage.

The converse is not true, however. For a given impulse response length,

we get greater computational advantage as the FFT size gets bigger. To

continue the example, 2 FFTs and a complex vector multiply of length 128 take

(18)

4096 multiplies; with length 256 they take 9216 multiplies (an increase of

2.25X). However, with a 65 tap filter, we can either process 128 input

points (64 in each half, real and imaginary) or 384 input points (192 in each

half). This Is an increase of SX the number of points. Therefore, the

_umber of multiplies per point goes down from 32 to 24! The problem with

this observation is that increasing the FFT length increases the pipeline

delay problem, as well as the noise problem, which will be discussed shortly.

The other way to reduce the pipeline delay is to segment the impulse

response. In this method, we would take a short input segment and separately

convolve it with each of the segments of the impulse response. The first

rseult, or "current" segment, i.e. the result of the convolution with the

first segment of the impulse response, would get played tmmed/atsly; the

remaining results ("future segments") would be saved for future use. Wb/le

playing the "current" segment, we would also have to add to it the previously

saved future output segments (which came from older input segments and later

impulse response segments) that correspond to the same time slot. This

reduces the pipeline delay by as much as desired, but does have the drawback

cf sacrificing some of the computational advantage. For instance, if we took

our example of the 131,073 (128K + 1) tap filter that needed 76 multiplies

per output point, and broke it up into 8 of the 16385 (16K + 1) tap filters

at 64 multiplies per point, it would appear that we would need 8 X 64 = 512

multiplies per point (and an add/ttonal 7 adds per point). This is a lot

more than 76, but still a whole lot less than 131,073.

Actually, that number can be improved substantially be removing some

redundant calculation. First of all, when doing 8 convolutions with the same

input points, we only need to do the forward FFT on the input segment once.

Analyzing the requirements of the 16K convolution, we determine that, of the

64 multiplies per point required, SO are for the forward FFT, 30 are for the

inverse FFT, and 4 are for the multiplication of FFTs. By only doing the

forward FFT once, we save ? X 30 = 210 multiplies per output point.

Secondly, instead of saving the final convolution results of each

segment, why not Just save the multiplied FFTs? Then, when it comes time to

play back a certain segment in time, we would first add together all the

multiplied FFTs that correspond to that time segment, and then perform Just

one inverse FFT per output segment. This is permissible because of the

principles of linearity and superposition. We will do more extra adds, since

we will be adding complex vectors, not rea1 ones, but we will save an

additional ? X 30 = 210 multiplies per output point, for a total of 512 - 210

- 210 = 92 multiplies per output point. This number could also be derived as

(19)

follows: 30 for one forward FFT per segment, 30 for one Inverse FFT per

segment, and 8 X 4 _ 32 for the 8 multiplicat/ons of FFTs. 30 + 30 + S2 =

92, as expected. Not that much of a penalty after all!

Another technique to increase throughput is the use of mult/ple

processors in para/lei. One nice feature of the Zoran Vector Signal
Processor family mentioned earlier As that multiple processors may be put on

the same bus without sacrificing performance. Multiple bus architectures may

also be used with multiple processors.

The other Important practical limitation involved An frequency domain

convolution is the same one encountered by any complex digits/ signs/

processing task, build-up of excessive computational noise. This is caused

by rounding off multiplication results, especially when those rounded off

results get passed through more mult/plicat/on stages, such as what happens

in an FFT--each butterfly pass reuses the rounded off results of the previous

pass. This Is especially a problem when using 16-bit devices, such as the
Zoran ZR34161 which was used to generate the examples shown previously.

Figure 10 shows the computat/onal noise that results in the "quiet space"

between the bumps tn the output of the example tn Figure 7. Note that the

amplitude scale has been greatly magnified, but the result would still be

audible noise. The obvious answer to this problem is to go to a device that

has greater precision, such as the new members of the Zoran Vector Signal
Processor family: the ZR34322, which has a 32 bit integer/block float/ng

point data format_ and the ZR34325, which has a 32 bit single precision

(IEEE-?54 compatible) floating point data format (much greater dynamic range,

but only 24 bits of precision). Determining which of those two data formats

is better for this application is beyond the scope of this paper, but either

one should yield a dramatic improvement In the computational noise

performance, compared to a 16 bit integer machine.

_W_RY

In summary, it has become feasible to attack an old set of problems

(those requiring equalizat/on in some form or other) with an old set of

theoretical magic (discrete-t/me frequency domain transform theory), using

a semi-old trick (Fast Fourier Transform algorithms) and new hardware

(integrated circuits that can perform this stuff in real time).

(20)

In fact, the scope of the "problems requiring equalization" that can be

attacked in this manner has been expanded by the efficiency of this approach.

Specifica//y, the problems that are more often thought of as time domain

problems, attacked with delay line solutions (like reverb generation), can

now be solved in the frequency domain using a "filter" approach.

In this paper, we have explored the theory behind this approach,
determined its computational advantages, shown how it can be used in a

variety of applications using today's technology, and explored some of the

problems that arise, with proposed solutions.

REFERENCES

[1] L.R. Rabiner and B. Gold, The_qry and_A_upltcation of Dt_ttalSignal

Processing, Prentice-Hall, Inc.,Englewood Cliffs, New Jersey, 1975.

[2] Alan V. Oppenheim and Ronald W. Schafer, Digital Stgna/ Processinq,
Prentice-Hall, Inc.,Englewood Cliffs, New Jersey, 1975.

[3] Zoran; Digital Signal Processors Data Book, Zoran Corp. 3450 Central
Expressway, Santa Clara, CA, 1987.

[4] Zoran; ZR34325 Vector Signal Processor Product Description, Zoran

Corp. 3450 Central Expressway, Santa Clara, CA, 1988.

[5] Zoran; ZR34322 Vector Signal Processor Product Description, Zoran

Corp. 3450 Centra/ Expressway, Santa C/ara, CA, 1988.

[6] Zoran Technical Note; Fast Convolution, TN92045, Zoran Corp. 3450
Central Expressway, Santa Clara, CA, 1987.

(21)

x(n) 7-1 x(_ x(n-2')

.....

---o._ N-1
yCn)=Z hCm)*xCn-m)

m=O

Figure 1. Typical FIR filter structure (3 taps).

·)

D
,_ _ [;_ ,,)

Figure 2. 'Linear Oonvolution, 400 Point Input, 100 Point Impulse Response.

Y
T_

_
........._,

_
./:-.:.,

"':'.':--.".
_-

-_
_.

._
_,

i

.o
_

_
,_

,D
...

o

.,_
,_

...

·
:1

o

-
--,--

-_

,
_
,

,.,L|
2

_
..

!fl[l'_
_tl

gg

'
'

'
'

'
'

I_
............

!
............

I!

..........
:..,..............

_

°
°

*
i

.....

_
i

i
'_

-
-
''

'r
-
-
'

i
i

I
_

_
''''

/
J;

_
_
..:..:..:..

:
.....

._
.........

.,..:
.

.
:

i
.1_

_
·.-,9

'
:_'_:

:
:

/
".'_

_---
:-fo--i

":"
:'

'-I_
I

_-":"%
.'_"i":.

:
/

_
'

]t_
ii,I_i_iI_ID

I_l
_...

,_,_1o,.,,.,,4_:_.
I__

s_

__lB
m

J--2
,

--

IP
4_..,

.
.

I
.

_
,

.
.

.
L

..-i
.

['
'-_i

.
o

o

i
i_ii

.......
_

-
_

E
............

.
-2

......

i
i

i..
,

i
i

.

I
9

!

§

fil
"fi'_

_
i

i_
i

i_
_

_
i

i
i

i
i

,
i

m
!

I
I

I
I

I
I

I
I

!
.

..............
J

................

....
....i

..I-_

Z
iii

ExteFfialHeso_,CoMplexData,RealP_t
298M i , , , t --

, i . . , . . . , . , , , , , . . ,

8

\
-28B

,i i i , i, t
1800 IM samples/ division 2499

TUFe(c_)tocontifiue,,,

Figure 7g, Close-up Display of Portion of Result (Time-scaled)

Figure 7. Fast Convolution of "Bump" Signal with Reflection Pattern

r
i

,
i

i
,

i
i

i
i

i
i

........
/

§

......
_

.
_

_
|

_
'-,,:.......

rt.:
._

·
i.._

_

_..
I

.
I

.
.

I
.

.
I

.
.

L
.

.
!

.....

_
.........................

I
I

.
I

I
I

I.
I

o

ExteFfial_MoPj,CoMplexData,RealPaPt
4m

1
0

!

V

0 508s_ples/ divisio, _5
_ype(cP)to contifitLe,,,

FlguFe 8c. _aat Convolution Resul_

Figure 8. Fast Convolution of Rectangular Pulse with T_iangular Pulse

-....
-k--_-'--'_'''_'_-

'---'--'
"-'

--I-
.-i_

_

........
I

_
'i

·_
,

..........................
_

·m
'

·_#
.......

/
I_:

.......
Il'":-

'
_1[-'2";"5'

.
.

.
.

J
_--

o

N.w
i

'
_

5
'

g
0

-..I..[-.I
.

·
I..

L..1..j
..-

s
.........

I
_

t)

.
....¢

_14

..J
...................

o
.

..

i
.......
I

I
I

I
I

I
!

External#eMoPy,CoMplexhta, Reall)aPt

J I *'

. . . ,

°,,°, ,,,°

,,.,. ,,.,,.,,.,..

-25 i ,,,, i i {
i585 19suples/aiuisiofi 1649

TgPe(cP)to _ntin_ ,,,

Figure 10. Computational Noise Resulting BeTween Bumps in Figure 7f,

