DIGITAL EQUALIZATION USING FOURIER 2694 (B-2)
TRANSFORM TECHNIQUES

Barry D, Kulp
Zoran Corporation
Needham Heights, Massachusetts

Presented at AUDTO
the 85th Convention

1988 November 3-6
Los Angeles

1
@

®

This preprint has been reproduced from the author’s advance
manuscript, without editing, corrections or consideration by
the Review Board. The AES takes no responsibility for the
contents.

Additional preprints may be obtained by sending request
. and remittance to the Audio Engineering Society, 60 East
42nd Street, New York, New York 10165, USA..

All rights reserved. Reproduction of this preprint, or any
portion thereof, is not permitted without direct permission
from the Journal of the Audio Engineering Society.

AN AUDIO ENGINEERING SOCIETY PREPRINT

DIGITAL EQUALIZATION USING FOURIER TRANSFORM TECHNIQUES

. Barry D. Kulp
Zoran Corporation

Needham Heights, Massachusestts

Abetract

Equalization using time domain digital convolution
becomes increasingly computationally intensive as impulse
response length increases. Fourier transform techniques
greatly reduce the computational load. The corresponding
theory is reviewed, and various applications are detailed,
including room, loudspeaker, instrument, and ambience
equalization. A practical real-time implementation using
an off-the-shelf digital signal processing integrated
circuit is described. Theoretical and practical limitations
of the applications and implementation are discussed.

ODUCTION

In this paper, we will explore both techniques and applications for
perfom1n§ digital equalization using Fouriler transform theory. Some of the
applications are ones that are not commonly thought of when the term
"equalization" is used, which we normally think of as just manipulation of
frequency spectrum characteristics, or filtering. For example, we will look
at "ambience egualization", which we will take to mean manipulation of
ambient, or reverberant, characteristics. This manipulation can include both
the cancellation of a room's undesirable ambient characteristics and/or the
creation of a desired ambient response.

All of the applications to be described, from simple filtering to reverb
generation, can be achileved in the digital domain using time domain

(1)

convelution techniques. However, in many cases, the amount of computation
required to perform the convolution directly in the time domain would be
prohibitive, relative to practical constraints of processing time and/or
hardware cost. Fortunately, frequency domain processing provides a solution
that greatly reduces the computational load involved in performing these
convolutions.

It will be assumed that the reader has some basic knowledge of digital
signal processing: that signals can be sampled, that the samples can be
combined using delay registers, multipliers and adders in some way to do
filtering, and that Fourier transforms exist and that they transform a signal
from its time domain representation (the samples) to the frequency domain (a
sampled spectrum) in a manner similar to the Laplace transforms of analog
signal processing. Building on this basic knowledge, we will briefly review
digital convolution and the Finite Impulse Response (FIR) filter structure.
From there we will explore the theory behind using PFourier transforms to
perform "fast convolution", greatly reducing the computational load as
promised.

After exploring the theory, we will then look at some of the many
applications using these technigues. Next, we will look at a hardware
solution enabling real-time implementation of the algorithms involved.
Finally, we will examine some of the limitations and problems encountered in
both the applications and the implementation, and discuss some ways to solve
them.

CONVOLUTION THEORY AND FILT STRUCTURES

Normally, when one thinks of a filter, one conceptualizes it as a
change in the frequency domain characteristics (spectrum) of the signal.
For example, a low-pass filter will allow the lower portions of the
spectrum to pass through from input to output, but not the higher
portions. However, due to the duality characteristics of the time and
frequency domains, we know that multiplication in the freguency domain is
equivalent to convolution in the time domain. In other words, to filter a
signal with a filter having a certain frequency characteristic, the result
being a signal with a spectrum that is the product of the spectra of the
input signal and the filter, we must convolve (in the time domain) the

(2)

input signal with the impulse response of the filter. The impulse
response can be thought of as a signal whose spectrum is the frequency
response of the filter.

In the continuous time domain (the analog world), we don't actually
set out to perform the convolution. Instead, we try to design a circuit
that has the desired frequency response (spectrum), which just happens to
have a certain impulse response that we can measure, which it convolves
with any input signal, the result of which we can observe. So, while the
circuit is actually doing the convolution, we don't normally think of the
filter in that way. Instead, when we talk about the filter, we talk about
its frequency-domain function, e.g. low-pass, high-pass, band-reject, etc.
Further evidence of this mind-set is the fact that analog filter design
programs are designed to convert back and forth between spectral
characteristics and component values for resistors and capacitors in a
particular circuit topography, with the concept of impulse response not
always directly addressed (although some filter design packages will plot the
impulse response and/or the step response of the circuit).

However, in the discrete time domain (the digital world), in addition to
thinking in terms of the frequency-domain function, we also often think in
terms of convolutions and impulse responses. This is evidenced by the
fact that digital filters are often described as infinite-impulse-response
(IIR) or finite-impulse-response (FIR), In fact, FIR filters are usually
implemented in such a way as to directly perform the convolution on the
input samples by doing a sum~of-products calculation. Also, FIR filter
design programs convert back and forth between spectral characteristics
and impulse response coefficient values.

Within the realm of digital filtering, there are various tradeoffs
between the IIR and FIR filter structures. The advantages of FIR filters
include: absolute guarantee of stability, well-behaved round-off error
characteristics, ability to realize arbitrary frequency responses, linear
phase, etc. The disadvantages of FIR filters are basically just delay
time (particularly if using the linear phase structure) and computational
load, which increases directly with impulse response length, which in turn
grows as the "precision" of the filter increases. By "precision", I am
referring to how closely the actual filter's frequency response varies
from an "ideal" one, in such areas as ripple and transition band width.

Typically, FIR filters are implemented as a sum of products. This is
easily conceptualized as follows: Because the filter is a linear system, we

(3)

may use superposition principles to manipulate our analysis of it. Consider
the input sequence as a sum of many different sequences, each one consisting
of all zeroes except for one unique point. In other words, the input to the
system is a sum of many different impulses, each with its own amplitude and
unique position in time. Therefore, the output of the filter will be simply

a sum of many copies of the impulse response, each one shifted to a unique
gtarting point in time, with a corresponding amplitude gain factor. If we
look at any given output point, we note that it will have contributions from
many of these various copies of the impulse response. In fact, if the length
of the impulse response (the number of points between the first and last
non-zero ones, inclusive) is N samples, then every input point will affect N
output points, and conversely the output at any point in time will be
affected by N input points (the current one and the N -~ 1 previous ones).

As a simple example, suppose the impulse response is only 3 samples
long, and their values are 0.4, 0.3, 0.2. This means that each input
point will contribute 0.4 times its own amplitude to the current output
point, 0.3 times to the next one, and 0.2 times to the following one.
Turn this around and we can see that each output point is the sum of 0.4
times the current input point, 0.3 times the previous input point, and 0.2
times the input point from 2 sample periods prior. The structure normally
used to implement this is shown in Figure 1. It demonstrates both of
these relationships: as each input point travels down the series of delay
taps, it will contribute first 0.4, then 0.3, and finally 0.2 times its
own amplitude to the output value before being "forgotten"; conversely,
the output is a sum of the 3 most recent inputs, with the weighting
factors correspondingly applied.

To repeat an important point for emphasis: the longer the impulse
response, the more multiplications and additions must be done in the same
amount of time, each sample period.

One thing to keep in mind about an FIR filter: it is not necessarily a
"filter" in the normal sense of the term. It is, in fact, just a circuit or
system that convolves an input signal with some finite impulse response. The
impulse response, in turn, is just a series of delayed impulses, which create
a series of delayed copies of the original input signal, multiplied by
various weighting factors (coefficients, or you could even call them gain
factors). Therefore, a sufficiently long FIR "filter" could perform
functions normally thought of as "delay-line" functions, or be used to
realize any arbitrary impulse response for purposes other than what would
normally be called "filtering". Again, the only drawback is the

(4)

computational load normally involved in implementing long FIR filters.

All of this brings me to the main point of this paper: It is
possible, using some mathematical trickery, to perform long FIR filter
functions with much less computational load than would normally be
required using a direct sum-of-products implementation. In the following
sections, we will explore these tricks, and some of the various functions
that can be performed with this structure.

FAST CONVOLUTIO!

In the preceeding section, we noted that the amount of computation that
must be performed in order to implement an FIR filter structure grows in a.
direct linear fashion with the length of the filter's impulse response: one
multiply and one add per filter tap per input point. Fortunately, FIR filters
with long impulse response lengths may be performed with far less
computational overhead using Fourier transform techniques. The basic idea
at work here is the exploitation of the transform theorem, which states that
"Convolution in the time domain is equivalent to multiplication in the
frequency domain,"

In order to perform multiplication in the frequency domain, we must be
able to convert our signals back and forth between the time domain and the
frequency domain. In order to do this, we will use the Fast Fourier
Transform (FFT), the theory and development of which is beyond the scope of
this paper. Once we have used the FFT to convert our input signal and our
impulse response to their frequency domain representations, we will multiply
them together to obtain the frequency domain representation of our output
signal, and then perform an inverse FFT operation on that to obtain the time
domain output signal.

This sounds simple enough, but in order to properly exploit this
phenomenon, we must understand some additional concepts: the difference
between linear convolution and circular convolution, and the two methods that
may be used, overlap-and-add and overlap-and-discard. Also, it must be shown
that this method, which certainly sounds more complicated than the direct
time~domain sum-of-products implementation, is in fact more efficient in
terms of computational load than that method.

(5)

Linear convolution is what we normally think of first when we think of
convolution. It is what was described above in the "Convolution Theory and
Filter Structures" section. Each input point, when passed through the filter
and convolved with the impulse response, will contribute to N (where N is the
number of taps, or length, of the impulse response) output points, starting
with the one at the same time, and including N ~ 1 more following it. In
this case, we can assign a second meaning to the "linear" in "linear
convolution"”, We can say that it also means that the output sequence
stretches out "linearly", i.e. in a straight line, in time following the end
of the input sequence.

Let's look at an example. Suppose the length of our "filter" is 100.
Therefore, each input point will affect 100 points, the "current" one and the
99 ones following it. Another way to think of this is to say that the
impulse response starts at t0 and goes to t99. Now, suppose we want to
"filter" an input signal that is 400 samples long (from TO to T399). We know
that the output sequence will start at TO with a contribution from the input
point at TO, but it will also stretch out timewise past T399. This is
because the input point at T399 will affect 100 output points, starting at
T399 and 99 more following it, out to T498. Overall, we can say that the 400
point input signal got "stretched" by 99 points by the "filter" to become a
499 point output signal. This is demonstrated in Figure 2.

Keeping that in mind, let's examine what we call "circular convolution'.
This is what happens when Fourier transform techniques are used to perform
convolutions. The basic problem is that the transform operates on a constant
number of points. That is, if we do a Fourier transform on 400 input points,
we get a spectrum with 400 frequency "bins". If we then do an inverse
Fourier transform on those 400 bins (even if we did the multiplication by the
Fourier transform of the impulse response), we still end up with only 400
output points, not 499. What happened to the other 99 points? They ended up
getting wrapped around back to the beginning of the 400 point buffer, as
though it were a circular buffer with the end continuously spliced back to
the beginning. These 99 points got added to the first 99 points of the
output buffer, rendering both the beginning and the end of the signal invalid
(there is no way to separate them back out, without just recalculating the
whole thing a different way anyway).

To see how this circular convolution comes about, look at Figure 3.
Keep in mind that a finite duration Fourier series carries with it the
implicit assumption that it has sampled one period of a periodic waveform, as
shown in Figure 3a. Figure 3b shows the results of a linear convolution on

(6)

each of the periods of this implied periodic waveform. Note that the period
of the waveform is still 400 samples, but the length of each slice of it has
grown to 499 points. Therefore, the end of one slice overlaps the beginning
of the next slice, Figure 3c shows the actual resulting 400 point output
sequence. The extra 99 output points generated by the convolution have
extended over into the next implied period, and the first 99 output points
have been corrupted by the extended output of the preceeding implied period.
Since each implied period is identical, the net effect is that the extra
points generated past the end of the sequence get wrapped around, circular
buffer style, to overlap (and get added to) the beginning points of the output
sequence.

The easy way to avold the problems of circular convolution is to use
Fourier transforms of a length that equals or exceeds the length of the
expected resulting output sequence. In the case of our example, we expect an
output of 499 points. Since we would like to maintain computational
efficiency, we want to use the FFT to do our transforms (as opposed to just a
direct form discrete Fourier transform). Since many FFT algorithms are based
on a radix that is a power of two, a 512 point FFT would make a lot of sense.
In order to use the longer length FFT, we simply need to append zeroes to the
input signal to pad it to the proper length. Figure 4 shows this being done.
Figure 4a shows the input signal, padded to length 6512, and its FFT. Figure
4b shows the impulse response, padded to length 512, and its FFT. Figure 4c
shows the result of multiplying the two FFTs in order to get the FFT of the
output sequence, which is then derived by performing an inverse FFT
operation.

This is all very convenient for operating on short, fintie duration
input sequences, but what happens if we have a signal that is practically
infinite (i.e. expected to go on for a very long time relative to the length
of the impulse response) and we want to start getting results out now? Then
we break up the input signal into shorter segments for immediate processing.
This is where the techniques known as overlap-and-add and overlap-and-discard
get used.

The overlap~and-add method is the easier one to use to explain this
concept, so that's where we'll start. To use the example we have been using,
suppose we have an impulse response with a length of 100 and we want to
segment the input sequence into chunks of length 400 and use FFTs of length
512 (actually, we will segment the input segquence into chunks of length 413
without any problem). We simply take each segment of the input sequence, pad
it out to length 512, and process it as before. Note that each chunk

(n

produces an output that extends into the time of the next chunk. In this
region of overlap, we must add the results of the two overlapping segments to
get the actual values of the output sequence. What has happened is this: we
have created a turn-on transient of invalid data (since it is missing the
contribution from the final 99 points in the preceeding segment} and a
turn-off transient of invalid data (since it is only the contribution from

the preceeding points in this segment, and not the contribution from the
"current" points in the following segment). In between we only have 314
points of valid data. In order to get 413 valid output points from the 413
valid input points we started with, we must add the turn-off transient from
one segment to the turn-on transient of the following segment in order to get
valid output points in the overlap region. This is shown in Figure 5.

The overlap-and-discard method is a little bit different from the
overlap-and-add method. It allows us to do basically the same thing without
having to do the extra addition steps in the overlap region. This is done by
actually allowing circular convolution to occur, We still segment the input
sequence every 413 samples, but now we take a whole 512 point sequence to do
the processing on. As a result, we get 413 valid output points. The easy
way to picture this is to realize that, by segmenting the input sequence in
this way, we produce a sequence that would be 611 points long if it were
linearly convolved: 99 points of turn-on transient, 413 points of valid
output, and 99 points of turn-off transient. Since we are using a 512 point
FFT, circular convolution will cause the turn-on and turn-off transients to
overlap each other and become totally invalid. These 99 points get
discarded, leaving us with our 413 valid output points, without having to do
any addition in the overlap region (we did our overlapping in the input
segmentation and circular convolution). This is shown in Figure 6.

To conclude our discussion of the fast convolution technique, let's
examine the computational differences between this technique and the direct
time-domain sum-of-products convolution technigque. To continue with our
example of a 413 point input sequence and a 100 point impulse response, it is
easy to see that, since we must do a multiply for each "tap" in the filter
for each output point we generate, we will do 51,200 multiplies, processing
in the time-domain (if we are very smart about not processing input points
that don't exist, we can get away with only 41,300 multiplies, or 100
multiplies per output point, the same result we would have if we were just
continually processing an "infinite" input sequence).

To see how much processing is needed in the frequency domain, we first
need to figure out how many multiplies are involved in doing a 512 point FFT.,

(8

If we implement it in radix-2 form, we do 9 passes, 256 butterflies per pass,
and 4 multiplies (actually one complex multiply) per butterfly, for a total
of 9216 multiplies. If we then say we have to do three FFTs, one on the
input sequence, one on the impulse response, and the inverse one on the
result of multiplying the other two, we get 3 X 9216 = 27,648 multiplies. If
we also do 512 complex multiplies to multiply the FFTs, we add 2048 real
multiplies for a grand total of 29,696 multiplies. This is not yet a very
dramatic improvement.

Suppose, however, that we are processing a longer sequence (or a bunch
of shorter ones) with the same filter. In this case, we can pre-compute the
FPT of the impulse response Jjust once and store it for use many times, just
like we would store the impulse response for the time domain convolution, and
not keep recalculating it from the filter design parameters for every sample.
This reduces our number of multiplies to 20,480. Okay, we've gotten down to
about 2 or 2.5 to 1 improvement. Still not great.

There is one final improvement we can make. Notice that we are
convolving a real signal with a real signal and getting real results. Notice
also that we are doing complex FFTs, which assume that the input sequence may
be complex. Well, if we convolve a complex input signal with a real impulse
response, we get a complex output signal whose real part is the convolution
of the real part of the input sequence with the impulse response, and whose
imaginary part is the convolution of the imaginary part of the input sequence
with the impulse response. Note that the real and imaginary parts stay
separate! (As long as the impulse response is real). We can exploit this by
actually processing two input sequences at once (or two segments of a longer
input sequence), by loading one in as the real part and the other as the
imaginary part, doing complex FFTs and multiplies, and storing out the real
part of the result as the first output sequence, and the imaginary part of
the result as the second output sequence. Therefore, the computational load
gets cut in half of what we just computed, for a total of 10,240 multiplies
per 413 point input chunk. This is less than 25 multiplies per output point.
Now we have an improvement of about 4 or 5 to 1!

The improvement gets even more dramatic as the filter length increases.
As an example, suppose the impulse response is 16,385 samples long! Also
assume that we will be continually processing an essentially infinite input
sequence and the FFT of the impulse response will be pre-computed and stored.
The easy part of figuring out how to compare the two methods is to note that
the time-domain method takes 16,385 multiplies per output point. If we use
32K point FFTs, we can process 16,384 output points at once in the real part,

(9)

and another 16,384 output points in the imaginary part. To do so takes 2
FFTs (one forward and one inverse), each one 16,384 butterflies per pass, 15
passes, and 4 real multiplies per butterfly, for 983,040 per FFT. Twice that
is 1,966,080. Add another 131,072 to do the 32K point complex multiply, and
get a grand total of 2,097,152 multiplies per 32,768 output points, or only
64 multiplies per output point. This represents an improvement of over 256
to 1!

A similar analysis done for an impulse response length of 131,073 points
and using 262,144 point FFTs ylelds a result of only 76 multiplies per output
point, an improvement of 1724.6 to 1 over the time domain requirements.

Note that the computational load, which grows in a direct linear
relationship with filter length in the time domain method, grows very slowly
as the filter length increases when using the frequency domain method. This
is a major advantage of frequency domain processing: it allows us to perform
certain tasks that we could not previously do in the time domain under
specific practical constraints of computation time and hardware cost (e.g.
relatively inexpensive real-time audio processing).

APPLICATIONS

In the following sections, we will discuss how these convolution
structures can be used to implement various functions, starting with ordinary
filtering and including various functions other than what is normally thought
of as filtering. For example, a pattern of delayed impulses, which can
emulate the early reflections of a room's ambient response, can be created
using convolution techniques. Ideally, this would provide no frequency
coloration, and therefore this would not normally be thought of as a filter,
but the FIR filter structure (implemented as a fast convolution using Fourier
transform techniques) can be used to create it.

INSTRUMENT EQUALIZATION

The first application area we will look at is one that is simply a
filtering application. This application, which I will call "instrument

(10)

equalization", is where frequency spectrum shaping is applied to a musical
instrument (or voice or any other sound) during recording or sound
reinforcement for the purpose of enhancing the sound in some (presumably)
desirable way. Typically this is done by a graphic or parametric equalizer,
or by built in tone controls in the instrument itself. Recently, digital
equalizers have appeared on the market.

If this function were to be done utilizing the technigques presented
here, we could obtain all of the advantages of the FIR filter structure, and
avoid the disadvantage of greater computational load. The remaining
disadvantage, processing delay, will be addressed In the "Limitations and
Problems" section,

Calculating the impulse response, or fillter coefficients, for a desired
frequency response is not a trivial matter, but various techniques are well
documented in standard digital signal processing textbooks [1,2] and are
implemented in various filter design software packages available on the
market.

One trap to avoid falling into 1s to think that one could implement the
filter directly in the frequency domain (and not bothering to calculate the
impulse response) by just taking the FFT of the signal, multiplying it by the
desired frequency response, and taking the inverse FFT of the result to
obtain the filtered signal. The reason why this will not work in general is
because of circular convolution. Any arbitrary frequency response that one
might apply in this manner will most likely transform (via inverse FFT) into
an impulse response that would occupy the full length of the FFT window. In
fact, a desired "ideal" frequency response would possibly have an infinitely
long impulse response, which would wrap around on itself in a circular buffer
manner as well., At any rate, circular convolution would occur, with two
nasty side effects: the output would exhibit non-causal characteristics, in
the sense that the circular convolution of an input event that occurs late in
the FFT time window would cause a response to it to appear at an earlier time
in that window; and each boundary point between FFT windows would have a
splicing discontinuity, since the first point in a window would be affected
by the points at the end of that window, and not by the points at the end of
the previous window, at it should be for a proper linear convolution.
Therefore, the best way to proceed is to use the existing filter design
algorithms to create an impulse response of a certain length (and in the
process making the freguency response non-ideal) and then proceed as
described with an FFT window of longer length.

(11)

ROOM EQUALIZATION

Another application that we may use these techniques for is in the area
of room equalization. Traditionally, room equalization for sound reinforcement
has been done with either graphic equalizers (to generally "level" the
frequency response of the room) and/or parametric equalizers (to notch out
particularly troublesome resonances). Using long "filter" lengths, it is
possible to almost exactly eliminate the early reflections and resonances,
essentially "de-convolving" the early parts of the impulse response of the
room. This results in a greater clarity of sound, while preserving the
overall later reverberation characteristics. The increased clarity is a
result of the delay between the original "direct" sound and the onset of the
reverberant field, similar to the use of the "pre-delay" parameter found on
gome digital reverb units on the market.

The basic problem here is to come up with some finite impuise response
that will perform the desired function. There are two ways to come up with a
solution., Both ways involve first sampling the impulse response of the room
itself. Then, determine what early characteristics are undesirable and
window the impulse response to include only this early part of the impulse
response. We now have a finite impulse response that we wish to cancel. We
must create another finite impulse response that will cancel it, i.e. will
create just a single impulse when convolved with the previously windowed
impulse response of the room. Actually, this is impossible to do exactly,
since this "inverse" impulse response that we are trying to determine will
almost always be infinite in length. However, in practical terms, we can
almost always determine some finite impulse response that will provide an
acceptable attenuation of the undesirable characteristics of the reverberant
field.

The first way to create this inverse impulse response is to calculate it
by brute force. That is, take the windowed impulse response of the room and
try to reduce it to just the original impulse by adding or subtracting time
shifted and amplitude scaled copies of itself in an iterative fashion. The
coefficients that are determined as the amplitudes (and signs) of the shifted
coples become the inverse impulse response. Eventually, the error signal
that remains uncorrected gets shifted out timewise and reduced in amplitude
to an acceptable degree.

The second way to create the inverse impulse response is to take the
Fourier transform of the windowed impulse response, take its inverse, and

(12)

perform an inverse Fourier transform to generate the inverse impulse
response. In theory this works because multiplying the two transforms would
give a transform with a constant value of 1, which corresponds to a single
impulse when inverse transformed back to the time domain. In practice, this
procedure has one serious pitfall: circular convolution! That's right, we
are actually generating an inverse impulse response that works when
CIRCULARLY convolved with the windowed impulse response. The only way to get
this to work for a linear convolution on a real signal is to minimize the
difference between the circular convolution and the linear convolution. To
do this, we must first have a windowed impulse response whose inverse, while
infinite in length, has some finite length beyond which there is some
acceptably minimal amount of energy. The only way to determine this is
probably trial and error., Once a length has been chosen, pad the windowed
impulse response to that length with zeroes, then perform the transform,
inversion, and inverse transform. The result will be a finite length impulse
response that consists of the infinite inverse impulse response wrapped
around on itself in a circular buffer fashion. Remember, though, that by
picking a sufficiently long transform, the "tails" of this impulse response
(the portions from distant times that got wrapped around) that cause error in
the cancellation have been kept to a minimum level. Now, to perform the fast
convolution on an actual signal (our normal operating condition after having
determined the inverse response), we will of course have to use a transform
length that is even longer still.

LOUDSPEAKER EQUALIZATION

A recent trend in the hi-fl audio industry is to make loudspeakers with
increasing amounts of functionality integrateél in, such as self-powered
speakers or "digital" speakers that have a digital-to-analog converter (DAC),
power amp and volume control integrated in. It should now be possible to
build self-equalizing speakers as well, in order to provide the best
reproduction possible from a given driver. The idea here is to use the same
approach as described for "Room Equalization", in which the impulse response
of the speaker is inverted for convolution with the actual input signal to be
reproduced,

Two basic application approaches present themselves here. The first is

to sample the impulse response of the speaker (drivers and enclosure) in an
anechoic chamber, compute the inverse, and permanently store it in the

(13)

"brain" of the speaker when shipped from the factory, so that the speaker
system itself is as good as it can be. The other approach is to let the
consumer perform the "calibration" routine by placing a microphone at the
preferred listening location, plugging it in to the speaker after
installation in the preferred position, and pushing a button on the back of
the speaker, which causes it to run its own calibration routine. This way,
the combination of the speaker, its position, and the room acoustics is
corrected for in the optimal way (again, limiting the length of the
cancellation so that it only has to correct for resonances, early
reflections, and frequency response variations, and not the entire
reverberant field of the room until the sound is completely gone.

Note that this technigue only corrects linear imperfections in the
speaker (resonances, reflection and diffraction effects, freguency response
variations) and not non-linear effects such as harmonic and inter-modulation
distortions. Also note that it can only correct for a given listening
position (in the room mode) or axis (in the anechoic chamber mode) and can
not correct simultaneously for variations in room acoustics or axial
response.

AMBIENCE EQUALIZATION

One more application area we will look at, which is the one that
requires the longest "filter" length, is that of ambience, or reverberation,
synthesis. In this case, the long "filter" impulse response would be the
pattern of reflections that make up the reverberant field. In this case, the
actual reverberation density, or number of reflections per unit time, could
be made as heavy or light as desired. The exact placement of every single
reflection could also be selected. Certain extra tricks could be played,
such as creating binaural pairs of impulses that would impart a more natural
directionality to each reflection, rather than just producing "stereo”
reverb, with reflections occurring randomly on either the left or right
side. It would even be possible to "sample" the reverberant field of an
actual space for use. In the extreme, a binaural sample could be taken from
the "best seat in the house" for each of many stage positions. Each
instrument in a multi-track recording could be processed with a different
reverb sample, corresponding to its desired stage position, resulting in an
extremely realistic aural image.

(14)

To really live up to the name "ambience equalization”, and not just
ambience generation, we could add the concept of "room equalization” and come
up with an impulse response that would first de-convolve a room's own lousy
reverberant field, and then generate the desired ambient field. To do this,
we could either first generate the room-equalizing de-convolving impulse
response by either of the two methods previously described, and then convolve
it with the desired ambient response; or we could directly generate it by the
brute force method previously described, where we would shift and scale the
room response in an iterative fashion to create the closest approximation to
the desired response, rather than the closest approximation to a dry impulse
as before.

REAL-TIME IMPLEMENTATION

As we saw in a preceeding section, using Fourier transform techniques to
perform fast convolutions greatly reduces the computational load compared to
performing the convolutions directly in the time domain. The question we
wish to address now is: is this lower computational load one that is
practical to implement? The answer is very emphatically yes!

Taking the last example given in the comparison of computational loads,
suppose we do have an impulse response of length 131,073, At any typical
digital audio sampling rate in the range of of 44.1 to 48 or even 50 KHz,
this would represent a period of 2.6 to 2.97 seconds, enough for processing a
respectable reverb sample.

Assuming a 50 KHz sampling rate, we would have 20 usec to perform the
calculations necessary for each output point. In the time domain, each
output point requires 131,073 multipiies (and adds). This would require
hardware capable of performing a multiply (and accumulate) in 152
bicoseconds! This is definitely not practical with today's technology.

However, in the frequency domain, we only require 76 multiplies per
output point for this long impulse response. This only requires hardware
capable of performing a multiply in 263 nsec. Today's single chip digital
signal processing (DSP) microprocessors have typical multiplication cycle
times on the order of 100 nsec or less. This is enough to easily handle the
multiplication requirements, but the algorithm does require other processing.

(15)

For example, the radix-2 butterfly in the FFT requires 6 ALU operations (adds
and subtracts) for each 4 multiply operations. Therefore, we need to find a
DSP integrated circuit (IC) that can process FFTs efficiently, i.e. use its
multiplier most of the time, not letting it sit idle while the IC is busy
doing other things.

One such family of DSP microprocessors is the Zoran family of Vector
Signal Processors. With a clock rate of 25 MHz, the multiplication
throughput time is 80 nsec. Other parts of its architecture make it ideally
suited for processing FFTs and vector multiplies. There is a dual ALU
architecture embedded in the execution unit that allows the radix-2 butterfly
to be performed in only 4 clock cycles, rather than 6. There is a separate
bus interface unit that can perform bit-reversed addressing, and dual
internal RAM sections that allow data I/O to be performed concurrently with
FFT execution. Another feature of the architecture is that it only uses one
external bus, for both instructions and data, and only uses it a fraction of
the time while performing FFTs at full speed. This allows multiple
processors to share a common bus and still run in parallel without fighting
for bus time. In fact, FFT and vector multiply operations are both single
instructions in the instruction set!

As an example, the ZR34325, a 32-bit floating point Vector Signal
Processor, will perform a 1K complex point FFT (including all I/0 and
bit-reversed addressing for data re-ordering) in 1.732 msec, or about 21650
internal clock cycles (at 80 nsec). This FFT operation itself requires: (10
passes) X (512 butterflies/pass) X (4 multiplles/butterfly) = 20480
multiplies. This means that the '325 achieves almost 95% utilization of the
multiplier bandwidth while performing an FFT. This results in an effective
multiplier throughput rate that is still under 100 nsec, which is more than
twice as fast as necessary for the example mentioned above.

The examples shown in Figures 7, 8, and 9 were performed on the ZR34}61,
a 16 bit block floating point/integer member of the Zoran Vector Processor -
family. Figure 7 shows a short "bump" (representative of a percussive sound)
being convolved with a pattern of randomly scattered and weighted impulses
(representative of an early reflection pattern in a reverb application). This
example allows one to see very clearly the effect of the convolution in
creating the many duplicate copies of the input signal. Figure 8 shows a
rectangular pulse being convolved with a shorter triangular impulse response
§0 that the turn-on and turn-off transients may be clearly seen. Figure 9
shows the same thing as Figure 8, except the rectangular pulse input occupies
almost the entire length of the FFT. This allows us to see the results of

(16)

circular convolution very clearly, since the turn-on and turn-off transients
now overlap each other at the beginning of the output buffer area. All
three examples use FFTs of length 4096; only the real parts of the complex
signals are plotted (except Figure 9b, where the zero imaginary part is also
plotted to provide a reference baseline at 0, since the real signal never
gets down that low, for easy comparison to Figure 8c), both the real and
imaginary parts of the FFTs in Figure 7 are plotted.

LIMITATIONS AND PROBLEMS

As with any technique that appears to do great and wonderful things on
the surface (and reducing computational requirements by a factor of over 1700
should certainly qualify as wonderful!l), there are certain disadvantages
involved here.

The first disadvantage is that of processing pipeline delay for
performing the FFT based convolution., In the time domain, we can have
immediate results--an output point is calculated from the current and N - 1
most recent input samples. However, in the frequency domain, since we are
calculating blocks of output points by segmenting and overlapping the input
data, we introduce delay. In our 100-tap filter example, we are taking input
segments every 413 points. If we look at the first point in one of those
segments, we see that we can't start the processing for it until 412 more
input points have come in. Then, there is more delay while we do the
processing--yes, we do very few multiplies per output point, but we have to
process the whole block at once, so we have a lot of multiplies to do before
we get the results that include that first output point that corresponds to
that first input point we were talking about.

For certain specific applications, this delay would be objectionable,
for Instance in sound reinforcement for live music, if the impulse response
used is long enough to create a noticeable delay. In other cases, a delay
would not be a significant problem. Examples would include: a self-equalizing
speaker for home use with a recorded or broadcast source, in which there is
no live action to refer to; or any sound reinforcement application using a
sufficiently short impulse response, and therefore negligible delay.

Another interesting application area that would not find the delay
objectionable is the digital audio workstation. As an example, suppose you

(17)

were experimenting with various reverbs on a track, or even doing "ambience
equalization” to fix a recording with bad source room acoustics. As long as
the processing was done at a rate that is at least as fast as the playback
rate, the pipeline delay would only add a few seconds to the "rewind time"
between playbacks with different settings. Since the processing is done in
digital scratchpad memory, any other tracks could easily be synced with the
delayed processed track. The reverbed track could be stored in another area
of scratchpad memory, so that subsequent playbacks of the same version would
have no extra delay. Compare this with other reverb approaches: typical
digital reverb technigues use several recirculating delavs with
cross—-feedback to create many reflections, but while this is also easily done
in real time with relatively cost-effective hardware, the reflection patterns
are still synthetic and not real samples of actual spaces; time-domain
convolution of a real reverb characteristic could also be done in software on
whatever microprocessor happens to be in the workstation, but it would be
excruciatingly slow when compiling a track with a new reverb characteristic
of any appreciable length.

In those applications where the delay is a problem, there is one obvious
solution that has its own other problem. If we simply reduce the number of
input and output points that we are processing in one chunk, we do reduce the
delay that comes from waiting for a whole lot more points. The problenm is,
we still have to do the same amount of processing (using an FFT that is still
bigger than the length of the impulse response) for that smaller number of
points. Therefore, the computational advantage of fewer multiplies per point
is lessened.

In fact, it can be shown that the greatest computational advantage for a
given FFT size occurs when the number of points processed and the number of
filter taps are both approximately half the FFT size. For example, suppose
we are using 266 point FFTs and we convolve 128 input points with 129 taps.
The equivalent number of multiplies in the time domain is 128 X 129 = 16512.
If instead we convolved 192 input points with 65 taps, the equivalent number
of time domain multiplies (using the same number of actual multiplies to do
the frequency domain processing) is only 192 X 65 = 12480. Similarly,
increasing the number of taps for the same length FFT reduces the number of
points that can be processed, also reducing the computational efficiency
advantage.

The converse is not true, however. For a given impulse response length,

we get greater computational advantage as the FFT size gets bigger. To
continue the example, 2 FFTs and a complex vector multiply of length 128 take

(18)

4096 multiplies; with length 256 they take 9216 multiplies (an increase of
2.25X). However, with a 65 tap filter, we can either process 128 input
points (64 iIn each half, real and imaginary) or 384 input points (192 in each
half). This i1s an increase of 3X the number of points. Therefore, the
aumber of multiplies per point goes down from 32 to 24! The problem with
this observation is that increasing the FFT length increases the pipeline
delay problem, as well as the noise problem, which will be discussed shortly.

The other way to reduce the pipeline delay is to segment the impulse
response. In this method, we would take a short input segment and separately
convolve it with each of the segments of the impulse response. The first
result, or "current" segment, l.e. the result of the convolution with the
first segment of the impulse response, would get played immediately; the
remaining results ("future segments") would be saved for future use., While
playing the "current" segment, we would also have to add to it the previously
saved future output segments (which came from older input segments and later
impulse response segments) that correspond to the same time slot. This
reduces the pipeline delay by as much as desired, but does have the drawback
of sacrificing some of the computational advantage. For instance, if we took
our example of the 131,073 (128K + 1) tap filter that needed 76 multiplies
per output point, and broke it up into 8 of the 16385 (16K + 1) tap filters
at 64 multiplies per point, it would appear that we would need 8 X 64 = 512
multiplies per point (and an additional 7 adds per point). This is a lot
more than 76, but still a whole lot less than 131,073.

Actually, that number can be improved substantially be removing some
redundant calculation. First of all, when doing 8 convolutions with the same
input points, we only need to do the forward FFT on the input segment once.
Analyzing the requirements of the 16K convolution, we determine that, of the
64 multiplies per point required, 30 are for the forward FFT, 30 are for the
inverse FFT, and 4 are for the multiplication of FFTs, By only doing the
forward FFT once, we save 7 X 30 = 210 multiplies per output point.

Secondly, instead of saving the final convolution results of each
segment, why not just save the multiplied FFTs? Then, when it comes time to
play back a certain segment in time, we would first add together all the
multiplied FFTs that correspond to that time segment, and then perform just
one inverse FFT per output segment. This is permissible because of the
principles of linearity and superposition. We will do more extra adds, since
we will be adding complex vectors, not real ones, but we will save an
additional 7 X 30 = 210 multiplies per output point, for a total of 512 - 210
- 210 = 92 multiplies per output point. This number could also bhe derived as

(19)

follows: 30 for one forward FFT per segment, 30 for one inverse FFT per
segment, and 8 X 4 = 32 for the 8 multiplications of FFTs. 30 + 30 + 32 =
92, as expected. Not that much of a penalty after all!

Another technique to increase throughput is the use of multiple
processors in parallel. One nice feature of the Zoran Vector Signal
Processor family mentioned earlier is that multiple processors may be put on
the same bus without sacrificing performance. Multiple bus architectures may
also be used with multiple processors.

The other important practical limitation involved in freguency domain
convolution is the same one encountered by any complex digital signal
processing task, bulld~up of excessive computational noise. This is caused
by rounding off multiplication results, especially when those rounded off
results get passed through more multiplication stages, such as what happens
in an FFT--each butterfly pass reuses the rounded off results of the previous
pass. This 1s especially a problem when using 16-bit devices, such as the
Zoran 2ZR34161 which was used to generate the examples shown previously.
Figure 10 shows the computational noise that results in the "guiet space"
between the bumps in the output of the example in Figure 7. Note that the
amplitude scale has been greatly magnified, but the result would still be
audible noise. The obvious answer to this problem is to go to a device that
has greater precision, such as the new members of the Zoran Vector Signal
Processor family: the ZR34322, which has a 32 bit integer/block floating
point data format; and the ZR34325, which has a 32 bit single precision
(IEEE~754 compatible) floating point data format (much greater dynamic range,
but only 24 bits of precision). Determining which of those two data formats
is better for this application is beyond the scope of this paper, but either
one should yield a dramatic improvement in the computational noise
performance, compared to a 16 bit integer machine.

SUMMARY

In summary, it has become feasible to attack an old set of problems
(those requiring equalization in some form or other) with an old set of
theoretical magic (discrete-time frequency domain transform theory), using
a semi-old trick (Fast Fourier Transform algorithms) and new hardware
(integrated circuits that can perform this stuff in real time).

(20)

In fact, the scope of the "problems requiring egqualization" that can be
attacked in this manner has been expanded by the efficiency of this approach.
Specifically, the problems that are more often thought of as time domain
problems, attacked with delay line solutions (like reverb generation), can
now be solved in the frequency domain using a "filter" approach.

In this paper, we have explored the theory behind this approach,
determined its computational advantages, shown how it can be used in a
variety of applications using today's technology, and explored some of the
problems that arise, with proposed solutions.

REFERENCES

[1] L.R. Rabiner and B. Gold, Theory and Application of Digital Signal
Processing, Prentice-Hall, Inc., Englewcod Cliffs, New Jersey, 1975.

[2] Alan V. Oppenheim and Ronald W. Schafer, Digital Signal Processing,
Prentice-Hall, Inc., Englewood Cliffs, New Jersey, 1975.

[3] Zoran; Digital Signal Processors Data Book, Zoran Corp. 3450 Central
Expressway, Santa Clara, CA, 1987.

{4] Zoran; 2ZR34325 Vector Signal Processor Product Description, Zoran
Corp. 3450 Central Expressway, Santa Clara, CA, 1988.

[5] Zoran; ZR34322 Vector Signal Processor Product Description, Zoran
Corp. 3450 Central Expressway, Santa Clara, CA, 1988.

6] Zoran Technical Note; Fast Convolution, TN92045, Zoran Corp. 3450
Central Expressway, Santa Clara, CA, 1987.

(21)

x (n) -1 I x(h-1)] -1 { x(n-2)

N-1
ym=ZI hm*xn-m
m=0

Typical FIR filter structure (3 taps).

Figure 1.
\/"—‘m__‘\
4 L LY
“f 7 T 7
e ZNPUT
5 >
i o Vg IMPusE pEcronge
—oN
—ruRN °E'I\' TuRN-oFF
ARANE : , TRANSZENT
: c\ ¢
<) : N
\ T T T =1 7
t © 9% ouTPuT 3972 493

Figure 2. ‘Linear Convolution, 400 Point Input,

100 Point Impulse Response.

TMILTED (CoPTES

\%

€ —>
i 3=y
:
Figure 3a. Implied Periodic Waveform for Fourier Analysis
. oM. ' -
-oN wt “TwN-0FF
et (TRANSTENT
e ;_,-.‘a/"‘.- W‘ = y
P L A MR
t ¥ o- Nt 2n-]
Figure 3b. Linear Convolution On Implied Periodic Waveform

i
GTON gf‘ GARBAGE ! loST DatA

RE
OlERLA 3 -«,I)
Z . i
Y T B T A 7
o Nep oy
Figure 3c. Resulting Waveform

Figure 3. Circular Convolution

Figure 4a.

Figure 4b.

Input Sequence Padded to 512 Points, and Resulting Spectrum.

o

Impulse Response Padded to 512 Points, and Resulting Spectrum.

' T
==
317 mSU

Output Sequence Derived From Multiplying Above Spectra.

lJ,Huuﬂle

Figure 4c.

Pigure 4. Linear Convolution Using FFTs On Padded Sequences

semiNT A <SEMENT B geemiNT(
. N\ NN AN
NPV M__
3 N

t’ﬁf'mﬂla/ LA
el ¢ 1A p e

SECMENTS PADDED WITH ZEROES

CoNVOLVED SEGHENTS

Figure 5. Overlap-And-Add Method for Segmenting Long Sequences

OVEFLAPPING SEGMENTS,
N0 Zewo PADDING

wAeTD Mmﬁf’f VALID
IR

SEGMENTY WITH
oM VoLUTTOfV GCAFBAGE.

.. e

ConvoL VE]
CTRCUL AR

; ! :. -)

L ’ ¢ .
& e e Yy
ouTPuT SF QMFNLE) CONSTRUCTED FROM
Wiezd pokTsons oF EACH SESHENT

(67%6A6L cE1s DISCARDED)

-

Figure 6. Overlap-And-Discard Method for Segmenting Long Sequences

External Mewory, Complex Data, Real Pant

- External Mewory, Cowplex Data (Imag = --)

— T | — T j 20000 =TT —TTT
................ | e\t
T N
@
............................. - “
gk -\ et
r - . ----:‘-"---- = J—
/ b)'
& ‘l 'I.
........... i i F\“‘ b ‘. \J ';‘ » + 1 1 t -
v ’
v \l L N O S T T T T T T T S S
\“ . ‘,f 1
e
-5 - "h ') .
0 ! !) $ } i | 1) 20000 i]) | | ' i 1
] 18 sawples / division 9 5000 20 samples / division Hy
Type {cv} to continue ...

Type {cr) to continue ..,

Figure 7a. 64 Point “Bump“ Input (Time-scaled) Figure 7b. Partial Display of Spectrum of Bump

External Memory, Complex Data, Real Pant

40600 |

S T R R TS BT RO SR

I

=111 1ol

.....

LT - PR
T 1
-
PR
e e e e e e—— ..
[N E———
JRSUNPISS——

i i

i
] 308 samples / division
Type {cr} to continue ...

Figure 7c. Early Reflection Pattern

20000

Euternal Mewory, Complex Data (Ikag = --)

9500 28 sanples / division 9699

Type {cr} to continwe ..,

Figure 7d. Partial Display of Spectrum ot Reflection Pattern

3000

Extornal Mewory, Cowplex Data (Iwag = --)

L — N

R Y O

] 1 1 i 1 1] | i

20 sanples / division 199
Type {cr} to continee ..,

Figure 7e. Partial Display of Multiplied FFTs

30000

[T —1 —1-,]

< e N
T

External Mewory, Complex Data, Real Pant

i T T S S P S PR

1 i
@ 388 samples / division
Tupe {c»} to continue ...

Figure 7f. Result of Convolution

External Memory, Complex Data, Real Pant
2200 —— T

DED DT

< .- ~

-20000
i j I i

1foa : 10 samples / division 2499
Tupe {cr} to continue ...

Figure 7g. Close-up Display of Portion of Result {Time-scaled)

Figure 7. Fast Convolution of "Bump" Signal with Reflection Pattern

3300

Bt~

External Mewory, Cowplex Bata, Real Pant

el T

T L T

el T T S T S S S S SR

]
] 508 samples

1
/ division
Type {cp} to continue ...

Figure Ba. Rectangular Pulse

16000

[~ 1 —1 0

SR, N

External Mewory, Cowplex Data, Real Pant

I i { t -

i i i j i i
108 samples / division 699
Type {c® to continue ...
Figure 8b. Triangular Impulse Response (Time-scaled)

External Mewory, Complex Data, Real Pant

SRS

= g~

. : : . .
] 508 sawples / divisio
Type {cr} to continue n 5

FPigure 8c., Faat Convolution Result

Figure 8. Fast Convolution of Rectangular Pulse with Triangular Pulse

Bxternal Mewmory, Cowplex Data, Real Part External Neworw, Cowplex Data (Inag = --)

5000 T T T T T T 1 1
L T 1
5 - 3
B . 8
B . B
I T -
A RPN /
/ . . .
C g
d ol t 4 1 . A} 1) b ‘
1 . [}
U .
510 T T 50 A
K i 1]] -l | | i 1 { i i i i i i
B 5080 sanples / division 4895 f 508 sauples / division 45
Type {c) to continee ... Type (erb to contine ...
pigure 9a. Longer Rectangular Pulse Figure Sh. Result of Circular Convolwtion with Triangular Pulse in Figure 8b.

Figure 9. Circular Convolution Example

External Mewory, Complex Data, Real Pant
2 T T T | I T

1580 10 samples / division 1649
Tupe {e») to continue ..,

Figure 10. Computational Noise Resulting Between Bumps in Figure 7f.

